Detecting organized eCommerce fraud using scalable categorical clustering

ACSAC’19

Samuel Marchal, Aalto University & F-Secure Corporation
Sebastian Szyller, Aalto University

Contact: samuel.marchal@aalto.fi
eCommerce fraud

3-5% of orders is fraudulent for $50B loss every year
Organized eCommerce fraud

Fraud detection system
Observation and assumption

Organized frauds belong to fraud campaigns characterized by

- Small number of customers (fraudsters)
- Several orders (10s)
- Limited time period (several days)
- Close geographical location (same city / neighborhood)
- Similar payment method (credit card / delayed bills)

By grouping orders into fraud campaigns we can improve the detection of organized fraud

→ Orders grouped together are likely fraud
→ Isolated orders are likely legitimate
Clustering organized fraud

Cluster frauds from the **same fraud campaign together**
- Generate **small clusters** → 1 cluster = 1 fraud campaign = 10s of orders
- Generate **singletons** → legitimate order can remain non-clustered

Process 100,000s orders in a few hours
- Scalable method with **low computational complexity**

Input categorical data
- Fraud campaign similarity = identical **categorical attributes**
 → email address, pickup point, street address, city, credit card number, etc.
Categorical clustering

Existing solutions

• Can generate small clusters, e.g., agglomerative clustering…
 … but requires pairwise distance computation $O(n^2)$ → not scalable
• Can have acceptable complexity (independent from dataset size), e.g., Kmodes…
 … but designed to generate only large clusters + no singletons

Require a new categorical clustering solution scalable and that can generate small clusters
Recursive Agglomerative Clustering Principle

Combine 2 clustering methods

- **Agglomerative clustering:** *AggloClust*
 - generate small clusters
 - high complexity

- **Clustering with sampling:** *SampleClust*
 - complexity reduction
 - generate large clusters (at most \(|\text{sample}|\))
RecAgglo Algorithm

Selectively apply AggloClust and SampleClust

1. Recursively split clusters using SampleClust
 • Until they are “small enough”
 • Random sample of size $|\text{sample}| = \log(n)$

2. Finalize small clusters using AggloClust
 • High quality small clusters
 • Possible singletons
RecAgglo speed and accuracy

Only **RecAgglo** and **SampleClust** scale to large datasets

→ 5 hours to cluster 300,000 samples

Clustering 10,000 legitimate orders and 5,000 frauds

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Impurity</th>
<th>Clustered fraud</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RecAgglo</td>
<td>0.8%</td>
<td>42.1%</td>
<td>185s</td>
</tr>
<tr>
<td>AggloClust</td>
<td>1.2%</td>
<td>51.9%</td>
<td>1h31</td>
</tr>
<tr>
<td>SampleClust</td>
<td>3.3%</td>
<td>2.2%</td>
<td>38s</td>
</tr>
<tr>
<td>Kmodes</td>
<td>10.5%</td>
<td>39.2%</td>
<td>7h44</td>
</tr>
<tr>
<td>ROCK</td>
<td>0.9%</td>
<td>30.3%</td>
<td>1h38</td>
</tr>
</tbody>
</table>

Only RecAgglo and **AggloClust** have high detection capability while achieving low impurity

→ potential to detect 42.1% frauds with 0.8% false positives
Automated fraud detection

Singletons are legitimate

Clusters are suspicious

- Augment fresh unlabeled orders with older labeled fraud prior to clustering
- Detect as fraud all orders in a cluster that include at least one labeled fraud
Fraud detection accuracy

Datasets
- 6M real orders from Zalando online retailer
- 5 countries
- 35 days

<table>
<thead>
<tr>
<th>Detection rate (clustered)</th>
<th>Detection rate (all fraud)</th>
<th>Precision</th>
<th>False positive rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.6 %</td>
<td>26.4%</td>
<td>35.3%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

False positives
- not “fraud”…
- … but 94.7% are returned, canceled or partly unpaid orders
Summary

Novel clustering algorithm for categorical data: *RecAgglo*
- Scalable
- Generates small clusters
- Designed for grouping organized fraud

Assessment on 6M orders from top European online apparel retailer: Zalando
- Detect 26.4% of fraud
- Generate 0.1% false alarms
- 95% of false alarms are problematic