Abstract

Life insurance companies, the largest institutional holders of corporate bonds, tilt their portfolios towards higher-yield bonds when interest rates decline. This tilt seems to be primarily driven by an increase in duration rather than credit risk and insurers do not seem to increase the credit risk of their bonds as interest rates decline. Moreover, the duration gap between their assets and liabilities deviates from zero for extended periods of time both in negative and positive directions. These patterns cannot be explained by increased incentives to reach for yield when interest rates are lower. We propose a new model of duration-matching under adjustment costs that conforms with these patterns and test other implications of this model. The gradual duration matching poses financial stability challenges distinct from reaching for yield.
1 Introduction

The effect of interest rates on financial institutions’ investment behavior has been the center of attention of academics, policymakers, and the media. A particular financial stability concern has been that the low-interest-rate environment prevailing since the 2008 financial crisis may heighten incentives of financial institutions to invest in riskier assets (Bernanke 2013; Stein 2013; Rajan 2013; Yellen 2014). At the same time, insurance companies have experienced an increased scrutiny in regulatory and academic debates (Koijen and Yogo 2015; Hartley, Paulson, and Rosen 2016). We study how changes in interest rates affect the investment and risk-taking behavior of life insurance companies, the largest institutional holders of corporate bonds, using a new regulatory database that includes a long time series starting in 1994 and covers the whole universe of life insurance companies.

We show that insurance companies tilt their portfolios towards higher-yield bonds when interest rates decline. At first, this seems to be consistent with “reaching for yield” behavior in a low-interest-rate environment (Becker and Ivashina 2015; Choi and Kronlund 2017). However, we find that the tilt towards higher-yield bonds seems to be primarily driven by an increase in duration rather than an increase in credit risk, and insurers do not seem to increase their credit risk as interest rates decline.1

An alternative hypothesis that can explain this phenomenon is that insurers hedge their risk through duration matching of assets and liabilities (Domanski, Shin, and Sushko 2017). The insurance company wants to adjust its portfolio to keep the duration gap between assets and liabilities close to zero in an effort to reduce its interest rate risk because of regulations that tie risk-based capital surcharges to interest rate risk (Lombardi 2006) and because the demand for their products depends on their health and riskiness (Koijen and Yogo 2015). The duration of liabilities reacts to changes in interest rates because of the behavior of policyholders. Many insurance products offer policyholders the option to contribute additional funds at their discretion or to close out (surrender) a contract in return for a predetermined payment. When interest rates change, it is more likely that policyholders will act on these options (Berends, McMenamin, Plestis, and Rosen 2013; NAIC 2014). In particular, lower interest rates increase liability duration by decreasing the likelihood of surrender and increasing the likelihood of paid-up additions. Therefore, the duration gap decreases when interest rates fall to which the insurance company reacts by increasing the duration of its assets in order to pull the duration gap back to zero.

Under continuous duration matching, the equity duration of insurance companies should

1Becker and Ivashina (2015) first documented reaching-for-yield behavior: insurance companies systematically bias their portfolios towards higher-yield bonds within the same rating category. Choi and Kronlund (2017) study how the reaching-for-yield behavior of bond mutual funds is affected by interest rates.
be close to zero. In contrast with this implication, we find that the duration of equity deviates from zero both in positive and negative directions for extended periods of time. Therefore, we propose a stylized theoretical model of duration matching with adjustment costs, in the spirit of capital adjustment costs that have been popular in the literature studying firms’ investment decisions since Abel and Eberly (1994).

In the context of insurance companies, these adjustment costs may stem from the fact that selling and purchasing assets in large quantities may have greater marginal cost due to market frictions like price pressure or due to greater cost of effort by investment managers (Saunders and Cornett 2001). This intuitive idea of frictions to portfolio adjustment is also confirmed in our discussions with regulators and conforms with the fact that the insurers engage in bond acquisitions and disposals intermittently. As a result, our paper complements Koijen and Yogo (2015), which studies the effect of frictions for the liabilities of life insurance companies, by studying the effect of frictions for the asset side of their balance sheet.

In our model, the duration of an insurer’s assets varies over time in response to interest rate changes both because of nonzero convexity of bonds and because of the insurer’s active adjustment to its duration through acquisitions and disposals. Our interest in the investment behavior of insurance companies requires us to isolate the second effect. To capture this effect, our model allows us to create a novel definition of active duration adjustment, measured as the difference between the duration of the insurer’s total holdings at the end of a given period and the duration of its legacy assets (the hypothetical duration of the holdings if the insurer were not to make any changes to its portfolio) under the new interest rates.

Our theoretical model leads to a simple solution that clarifies the relationship between an insurer’s active duration adjustment, $\Delta D_{A,t}$, duration of its legacy assets, $D_{0A,t}$, and the target duration that depends on the duration of its liabilities which, in turn, depend on interest rates, $D^*_A(r_t)$,

$$\Delta D_{A,t} = -\alpha \left[D_{0A}^{r_t} (r_t) - D^*_A(r_t) \right].$$

(1)

The parameter α captures the speed of adjustment that depends positively on the cost of carrying interest rate risk due to deviations from a zero duration gap and negatively on the cost of adjustment.

The insurer’s investment behavior described in equation (1) mirrors the way the time-varying target leverage hypothesis describes capital structure decisions in corporate finance (Leary and Roberts 2005). In particular, this expression captures how fast the firm reacts

2Based on the quarterly observations, a typical insurance firm trades bonds about 2/3 of the quarters. One concern is that this observation may imply that life insurers rely on derivatives to manage interest rate risk. However, derivatives have historically played little role in risk management in the life insurance industry, at least until the regulatory changes after 2009 (Berends, McMenamin, Plestis, and Rosen 2013; Sen 2019). Our results are robust to restricting the sample to pre-2009 period.
to imbalances in the duration of its legacy assets in relation to its target duration. As a result, it can be directly estimated using a standard regression approach, akin to reduced-form econometric models used to test the target leverage hypothesis in empirical corporate finance (e.g., DeAngelo and Roll 2015).

Our model, while stylized, has several powerful implications which can be tested with our long and comprehensive panel data of insurance companies. Consistent with the implication that adjustment towards the target duration happens gradually, we find that it takes an insurance firm about 11 quarters to close half the duration gap, leading to extended periods of exposure to interest rate risk. Moreover, our estimates are also consistent with the predictions of the model regarding the relationship between target duration, leverage, and interest rates through duration of liabilities, \(D_A^*(r) = \frac{k}{\lambda} D_L(r) \). In particular, we find that the active duration adjustment is positively related to leverage and negatively related to the product of leverage and the interest rate, and the interest rate does not have an additional effect on active duration adjustment beyond its interaction with leverage.

Our model also predicts that the speed of adjustment should be slower for firms that face larger costs of rebalancing their portfolio. Accordingly, we find that firms with larger holdings have a slower speed of adjustment consistent with the argument that they need larger trades for the same amount of duration adjustment and thereby face larger costs due to the price pressure generated by their trades. Similarly, we find that firms with less liquid portfolios have a slower speed of adjustment consistent with the argument that they face larger trading costs when they want to adjust their portfolios.

The premise of our model lies in the argument that policyholders’ behavior reacts to interest rate changes (Berends, McMenamin, Plestis, and Rosen 2013; NAIC 2014). When interest rates are lower, policyholders have greater incentives to hold on to their insurance contracts due to lack of other high-yield investment opportunities. This implies that policy surrenders and lapses become less likely as interest rates decline, which increases target duration of the insurer\(^3\). Consistent with this argument, we find a positive relationship between interest rates and surrender/lapse rates, and this association generates a negative relationship between surrender/lapse rates and active duration adjustment.

Finally, we use our estimated model to calculate the duration of equity predicted by our model. We show that this predicted duration of equity matches with the empirical interest rate sensitivity of equity returns of insurance companies.

Overall, our results suggest that insurance companies tilt their portfolio towards higher duration assets in an effort to minimize their interest rate risk subject to adjustment costs.

\(^3\)A lower surrender rate lengthens the duration of the payments insurance companies have to make as the underlying risk will materialize in the future. A lower lapse rate increases target duration primarily by increasing the liabilities, and hence leverage, of the insurance company. See Section 5.4 for details.
This poses challenges to financial stability that are separate from reaching-for-yield behavior. In particular, reaching for yield in a low-interest-rate environment may suggest that central banks should raise interest rates to prevent financial institutions’ excessive risk taking that can generate additional negative effects if the economy experiences adverse shocks. In comparison, duration matching under adjustment costs suggests that the insurance companies are exposed to interest rate risk for an extended period of time even if their goal is to minimize risk. In this framework, the central bank should take into account the sign of the duration gap when deciding to raise interest rates. If the duration gap is positive, then an increase in interest rates can reduce the target duration and hence increase the duration gap further, thereby increasing the interest rate risk of the insurance companies rather than reducing it. In the current environment, however, the equity duration (and hence duration gap) of U.S. insurance companies is negative, thereby giving an additional incentive for the Federal Reserve to raise rates to reduce the duration mismatch faced by insurance companies due to adjustment costs.

Our results are also related to the previous literature on insurance company investment behavior. The seminal paper in this literature, Becker and Ivashina (2015), studies how the reaching-for-yield behavior of insurance companies changes before and during the financial crisis and finds that insurance companies reach for credit risk before, but not during, the financial crisis. Our focus is on understanding the drivers of the changes in excess yield on insurance companies’ portfolios as the interest rate changes. We find similar results as Becker and Ivashina (2015) for their time window 2004:Q3-2010:Q4; however, we find that the bulk of the negative relationship between the interest rates and the excess yield in insurance companies’ bond holdings relative to the market can be attributed to changes in duration risk rather than credit risk over the 1994–2016 sample period.

2 Data and Stylized Facts

2.1 Data Construction

We construct our dataset by combining data from several sources. The data for life insurance companies’ corporate bond holdings comes from NAIC statutory filings. Schedule D of insurance filings has detailed information on investment by life, health, and property and casualty (P&C) insurance companies, including corporate bonds, stocks, and municipal bonds. We obtain our data of insurance company holdings directly from NAIC through a special agreement with the Federal Reserve. The data have a complete coverage of all the NAIC-reporting insurance companies from 1994Q1 to 2016Q4. Schedule D has both annual
files with year-end portfolio holdings information, and quarterly files which contain asset acquisition and disposal information within each quarter. The exact date and amount of each insurance company’s acquisition/disposal transactions are documented. Thus, we know their portfolio rebalancing behavior at a very granular level.

The corporate bond pricing information comes from Mergent FISD bond transactions (1994–2002) and TRACE (2002–2016). The Mergent FISD consists of all transactions of publicly traded corporate bonds by life insurance companies, property and casualty insurance companies, and health insurance companies beginning in January 1994. Previous research has shown the FISD data are representative of corporate bond transactions (Warga 2000; Campbell and Taksler 2003). The TRACE data have transaction reports for all corporate bonds back to July 2002. The data are cleaned using the filtering algorithm in Dick-Nielsen (2009). We obtain the bond issuance information from Mergent FISD, which provides coupon, maturity, offering amount, and rating. We measure credit risk using the distance to default, expected default frequency (EDF), and the CDS spread. The distance to default (DD) is publicly available from the Credit Research Initiative at National University of Singapore, which is available for our entire sample (1994–2016). The EDF comes from Moody’s and starts from 1999; the CDS spreads comes from Markit and starts from 2002.

Our sample covers a relatively high interest rate period from 1994 to 2000 and the post-recession low interest environment from 2010 to 2016. As far as we know, our sample has a longer time span compared to other papers that investigate investment behavior of financial institutions in the bond market. With a long sample of 23 years, we are able to study how insurance companies’ investment behavior differs as interest rates change.

2.2 Measuring Life Insurers’ Tilt for Higher-Yield Bonds

Insurance companies are the largest institutional holders of corporate and foreign bonds. According to the U.S. Flow of Funds Accounts, in 2018Q4, life insurers held $2.61 trillion of corporate and foreign bonds, quantitatively similar to mutual and pension funds taken together.\footnote{Insurance regulations require insurance companies to maintain minimum levels of capital on a risk-adjusted basis, called risk-based capital (RBC). To determine the capital requirement for credit risk, corporate bonds are sorted into six broad categories (National Association of Insurance Commissioners (NAIC) risk categories 1 through 6) based on their credit quality.\footnote{For example, the sample period in Becker and Ivashina (2015) is from 2004 to 2010, and the sample period in Choi and Kronlund (2017) is from 2002 to 2012; both are less than half of the length of our sample.\footnote{Mutual funds and pension funds are the second and third largest institutional holders in this market, with holdings of $1.98 and $0.73 trillion, respectively, for the same time period.}}}
credit ratings, with higher numbered categories subject to higher capital requirements. As discussed in Becker and Ivashina (2015), due to the regulations and the presence of government guarantees, insurance companies may attempt to increase the yield in their bond portfolio by taking on extra priced risk, while leaving capital requirements unaffected. Therefore, we focus on corporate bond holdings of insurance companies, conditional on NAIC risk categories.

We study whether the incentives of insurance companies to invest in higher-yield bonds within a given NAIC rating category is related to the level of interest rates. To measure this empirically, we compare the average yield of insurance company corporate bond holdings with the average yield of the aggregate corporate bond portfolio (Choi and Kronlund 2017), within each NAIC rating category.

We define the excess yield $ExYld_t$ of the insurance sector at date t within the NAIC1 category as the average yield of insurance sector’s NAIC1 bond portfolio relative to the average yield of all outstanding NAIC1 bonds in the market:

$$ExYld_t = \frac{\sum_j A_{j,t} y_{j,t}}{\sum_j A_{j,t}} - \frac{\sum_k M_{k,t} y_{k,t}}{\sum_k M_{k,t}}$$

where $y_{j,t}$ is the yield on bond j, $A_{j,t}$ is the amount of bond j held by insurance sector and $M_{k,t}$ is the total amount of bond k outstanding in the market. Comparing the relative yield of an insurance company’s portfolio to the market within an NAIC designation allows us to control for the unobservable factors that drive variation in the market yield. Similarly, we could also define the $ExYld_{i,t}$ in NAIC2 designation. The main results we present in the paper are based on NAIC1 designation.

2.3 Stylized Facts

We document three stylized facts on the relation of the excess yield to interest rates and on the underlying risk quantities insurance companies are loading on. We use the 10-year Treasury Constant Maturity Rate as the interest rate variable because it has duration very comparable to both the assets and liabilities of typical insurance companies, and therefore

6The NAIC categories map into S&P ratings in the following way: $NAIC1 = \{AAA, AA, A\}, NAIC2 = BBB, NAIC3 = BB, NAIC4 = B, NAIC5 = CCC, NAIC6 = \{CC, C, D\}$

7Over 60% of corporate bond holdings of insurance companies is in the NAIC1 category, with over an additional 30% in the NAIC2 category. The robustness of our results using NAIC2 category bond holdings are available upon request. Since the holdings in the remaining NAIC categories are less than 10% of their total corporate bond holdings, we do not study other categories.
should be the most relevant discount rate insurers use while making investment decisions (Domanski-Shin-Sushko 2017; Hartley-Paulson-Rosen 2016). In later parts of the paper, we present a partial adjustment model of duration matching to rationalize these facts.

Our results indicate that (i) as interest rates decline the excess yield of insurers’ corporate bond portfolio increases, (ii) this pattern disappears after controlling for duration, (iii) the pattern remains after controlling for credit risk. These results suggest the excess yield of insurance companies increase as interest rates decrease primarily because of the increase in the duration risk, rather than credit risk, of their portfolio. We further confirm this conclusion using risk quantities capturing duration and credit risk.

Stylized Fact 1: The excess yield of life insurance sector’s corporate bond portfolio increases as interest rates decline.

Figure 1 plots the excess yield of the bond portfolio for life insurance companies and the level of the 10-year Treasury yield (1994q1–2016q4). As the interest rate declines, life insurance companies tend to hold portfolios with a higher yield relative to the rest of the market, within the same rating category. Insurance companies on average hold higher-yield bonds than the market in the NAIC1 category, and hold bonds with similar yield to the market in the NAIC2 category. However, the negative relationship between excess yield and the interest rate holds in both rating categories. In the NAIC1 (NAIC2) category, a 1 percentage point decrease in the 10-year treasury yield is associated with a 10.9 (3.6) basis point increase in excess yield on insurance companies’ bond portfolio.

There are two major sources of risk in the corporate bond market that insurers could load on in order to generate higher expected returns. The first source is credit risk. As argued in Becker and Ivashina (2015), one way for insurance companies to reach for yield is to increase their holdings of bonds with greater credit risk within the same NAIC rating category. The second source is duration risk. Lengthening the bond portfolio’s duration is an alternative way for insurers to increase the portfolio’s expected return. In fact, if the excess yield on insurers’ portfolio is driven by a reaching-for-yield incentive, they will strategically load on both credit risk and duration risk based on optimal risk-return trade-off.

We study whether duration or credit risk can be a sufficient statistic that explains the relationship between interest rates and the excess yield on insurance companies’ portfolio, using a matching algorithm. In particular, for every NAIC1 (NAIC2) bond that insurance companies hold on their balance sheet in a given quarter, we find 10 bonds among all the NAIC1 (NAIC2) bonds outstanding (excluding the bond itself) with the closest duration to the bond we want to match with. Then we subtract the average yield of the 10 duration-matched bonds from the yield of the bond that insurers hold. We call this excess yield
“duration-matched excess yield” of the bond. This metric allows us to study how much of the excess yield is left on insurance companies’ bond portfolio after controlling for duration risk.

We also create a “credit-risk-matched excess yield” using a similar matching algorithm based on distance-to-default or CDS spreads as in Becker and Ivashina (2015). The 10 bonds in each control group are chosen among the universe of bonds in the same NAIC category, which represent insurance company’s possible investment space in that category. We aggregate the duration- and credit-risk-matched excess yields for the whole insurance sector by value weighting the bond-level metric by the total amount held by the insurance sector.

In our empirical design, we are always using market holdings of corporate bonds as the benchmark (control) group, following Becker-Ivashina (2015) and Choi-Kronlund (2017). Similarly, we use only corporate bonds in duration matching, in line with Choi and Kronlund (2017) who use maturity buckets within the corporate bond universe.

The matching procedure has an important advantage over a linear regression framework where duration is used as a regressor, which is a commonly used method in the literature. Since we repeat the matching exercise every quarter, our approach takes into account the changes in the price of duration risk over time. This guarantees that the changes in excess yield are driven by changes in the quantity of duration risk, rather than mechanical changes due to the fluctuations in the price of duration risk, which would affect the excess yield even if there’s no change in the investment behavior of the insurance companies. We also look at the quantity of duration risk directly in our analysis.

There is another advantage of our approach compared to linear regression. The duration-matched excess yield captures how much of the excess yield remains on the insurance sector’s portfolio after we control for duration. By comparing the yield of the insurance sector’s bond holdings with a control group from all the bonds outstanding with similar duration in the same NAIC category, we can properly take care of any nonlinear relationship between duration and yield, which could not be fully controlled in a linear regression framework.

Stylized Fact 2: After controlling for duration, the “duration-matched excess yield” does not react to interest rate changes.

Figure 2 plots the duration-matched excess yield against the 10-year Treasury yield. Unlike the excess yield, the duration-matched excess yield no longer increases when the interest rate declines. In the NAIC1 category, the “duration matched excess yield” is insensitive to changes in the interest rate (Panel A), and in the NAIC2 category, it even slightly declines in
the low-interest-rate-environment (Panel B). When interest rates are high, the excess yield (scattered in orange) and duration matched excess yield (scattered in blue) are indistinguishable from each other, whereas their difference widens when the interest rate declines. This pattern tells us that the negative association between insurers’ excess yield and the interest rate we see in Stylized Fact 1 can be attributed to the difference in the duration profile of their portfolios relative to the market, suggesting that insurers may be increasing their asset portfolio duration as the interest rate declines.

Indeed, this hypothesis is verified in Figure 2, Panel C. We calculate for the NAIC1 category the “excess duration” of the insurance sector’s bond holdings (holding-weighted average duration of insurance company portfolio minus the average duration of the market). We see that, on average, insurance companies hold higher duration bonds. Moreover, the excess duration varies a lot with the interest rate. When interest rates are around 7%, the excess duration is almost zero, and it then increases monotonically to around 2.5 when interest rates decline to 1.5%.8 We observe a similar qualitative pattern in Panel D for NAIC2 category.

Overall, our first stylized fact suggests that duration risk is the main culprit behind the negative relationship between interest rates and insurance companies’ excess yield. One might be concerned whether some of the patterns in Panels A and B in Figure 2 are driven by the correlation of duration and credit risk. Indeed, we could be unwittingly capturing the effect of credit risk in Figure 2 if longer duration bonds are issued by lower quality firms, which does not seem to be the case in the data. Moreover, if this were the case, then we should also observe a pattern similar to the one in Figure 2 for credit-risk-matched excess yields. Our next stylized fact suggests otherwise.

Stylized Fact 3: After controlling for credit risk, the “credit-risk-matched excess yield” still increases as the interest rate decreases.

As shown in Figure 3 (Panels A & B), the “DD-matched excess yield” still has a very negative relation to the level of the interest rate. In fact, the “DD-matched excess yield” is almost indistinguishable from the excess yield. This means the credit risk alone does not explain much of the changes in excess yield on insurers’ bond portfolio in response to changes in interest rates. This is verified in Panels C & D of Figure 3 which show that there is no strong negative relationship between interest rates and the excess credit risk on insurance companies’ bond portfolio using Moody’s EDF.

8We use modified duration, which is a price sensitivity measure. It is defined as the percentage change in the price of the bond when the yield increases by 1 percentage point.
The distance to default measure is publicly available, covers a large cross-section of firms, and goes back to the beginning of our sample (1994Q1), thus we use it as our benchmark measure of credit risk. However, we also use the CDS spread as an alternative measure of credit risk to corroborate our findings, following Becker and Ivashina (2015). This robustness test addresses the concern that the default probability computed using the Merton model sometimes does not turn out be the best measure of default risk when evaluated using out-of-sample forecasting ability (Bharath and Shumway 2008). Figure A1 in the appendix reports the plot of CDS-matched excess yield against the 10-year treasury yield. The results suggest that the “CDS-matched excess yield” still has a very negative correlation with the level of the interest rate, putting these concerns to rest.

To summarize, we show that insurance companies; insurers’ portfolio is tilted toward higher-yield bonds when interest rates decline. At first, this seems to be consistent with “reaching for yield” in a low-interest-rate environment. However, we find that the tilt toward higher-yield bonds seems to be primarily driven by an increase in duration rather than credit risk, and insurers do not seem to increase their credit risk as interest rates decline.

These patterns cannot be squared with a rational model in which insurance companies take on excessive risk to reach for yield when interest rates are low because (i) exposure to credit risk does not react to changes in interest rates, and (ii) life insurance companies tend to have longer liability duration than asset duration, and increasing asset duration in response to interest rate declines would actually reduce their risk, rather than causing them to take on additional risk. In the next section, we propose an alternative explanation for these stylized facts: insurance companies are gradually adjusting their asset portfolio duration to meet a duration target that minimizes their interest rate risk subject to adjustment costs.

3 Duration Matching by Life Insurance Companies

3.1 Duration Gap

Understanding the concept of duration matching starts with understanding the concept of duration gap. We adopt the definition from Mishkin and Eakins (2012) and define the duration gap as $G \equiv D_A - \frac{L}{A}D_L$, where D_A is the duration of assets, D_L is the duration of liabilities, and L/A is leverage (liabilities/assets).

9The CDS spread data are available from 2002Q1 to 2016Q4.
10For the study of reaching for yield in the context of various financial institutions, see Choi and Kronlund 2017; Chodorow-Reich 2014; Barbu, Fricke and Moench 2016; Ma, Lian and Wang 2017; Di Maggio and Kacperczyk 2017.
This definition is motivated by the fact that an insurance company with zero duration gap will have an equity value, E, immune to interest rate changes. To see this, note that
\[- \frac{\partial E}{\partial r} = - \frac{\partial (A - L)}{\partial r} = - A \frac{\partial \ln A}{\partial r} + L \frac{\partial \ln L}{\partial r} = A \left(D_A - \frac{L}{A} D_L \right) = A \times G.\]
Dividing both sides by the equity value of an insurance company and noting that duration of equity $D_E = - \frac{\partial \ln E}{\partial r}$, we get the identity $G \equiv \frac{E}{A} D_E$. Domanski, Shin and Sushko (2017) argue that the insurance company wants to adjust its portfolio to keep the duration gap between assets and liabilities close to zero in an effort to reduce the interest rate risk because of regulations that tie risk-based capital surcharges to interest rate risk (Lombardi 2006) and because the demand for their products depends on their health and riskiness (Koijen and Yogo 2015).

Duration matching can also rationalize the fact that insurance companies have a shorter duration of assets relative to their liabilities (EIOPA 2014a, b, Graph 78), a fact hard to rationalize in a framework where insurance companies acquire high duration bonds to “reach for yield”. In a framework where insurers reach for yield by acquiring higher duration assets, asset duration should exceed liability duration and a lower interest rate environment would exacerbate this difference. Given that the life insurance sector has an average modified asset duration less than 9 even in the highest quarter, and many policies (liabilities) have time spans of 10-30 years, this implication of reaching for yield is difficult to reconcile with the data. However, duration matching readily explains why $D_A < D_L$. When the insurer’s goal is to attain a zero duration gap, i.e., $D_A = \frac{L}{A} D_L$, we have $D_A < D_L$ because leverage $L/A < 1$.

In principle, life insurers could also use derivatives to manage their interest rate risk, in addition to adjusting asset duration. However, derivatives have historically played little role in risk management of the life insurance industry (Berends, McMenamin, Plestis, and Rosen 2013; Sen 2019). Therefore, we do not consider interest rate derivatives in the analysis and assume insurers have to rely on duration matching to manage their interest rate risk.\footnote{Sen (2019) finds that after 2009 regulatory changes have lead to a more active use of derivatives. Our results are robust if we restrict our sample to pre-crisis period.}

3.2 Do Insurers Always Maintain Zero Duration Gap?

We start our analysis with the simplest duration matching framework: insurers continuously rebalance to attain a zero duration gap, so that equity is always immune to interest rate fluctuations. This is similar to the stylized example of duration matching in Domanski, Shin, and Sushko (2017). A few testable implications come out directly from this framework.

Consider an insurance company aiming to always keep the duration gap equal to zero, $G = 0$. As the interest rate changes, the duration gap can deviate from zero, and hence the insurer needs to engage in dynamic hedging. How the insurance company rebalances its portfolio depends on dG/dr, the sensitivity of the current duration gap to the interest rate.
Our stylized fact implies that insurance companies increase the duration of assets, D_A, after an interest rate decrease, which is consistent with a scenario that the duration gap falls below zero and insurance companies have to lengthen asset duration to close the gap. This implies $dG/dr > 0$.

Therefore, the simplest duration-matching framework suggests $G = 0$ and $dG/dr > 0$. These predictions are testable using the duration and convexity of insurance companies’ equity. As discussed in the previous section, the sensitivity of equity to the interest rate is directly linked to the duration gap: $-\frac{\partial E}{\partial r} = A \times G$. So if the duration gap is equal to zero, the equity value must be perfectly immune to interest rate fluctuations. In other words, the duration of equity $D_E \equiv -\frac{1}{A} \frac{dE}{dr} = 0$. Note that $-\frac{\partial E}{\partial r} = A \times G$ also implies $\frac{dG}{dr} = \frac{d}{dr} \left(-\frac{1}{A} \frac{\partial E}{\partial r}\right) = -\frac{1}{A} \frac{d^2E}{dr^2} + \frac{dE}{dr} \frac{1}{A} \frac{dA}{dr}$. When duration is perfectly matched, we have $\frac{dE}{dr} = 0$, which means $\frac{dG}{dr} = -\frac{1}{A} \frac{d^2E}{dr^2}$. So, $dG/dr > 0$ implies $-\frac{d^2E}{dr^2} > 0$. This means the convexity of equity $C_E = \frac{1}{E} \frac{d^2E}{dr^2} < 0$. In sum, perfectly matched duration leads to the following predictions:

1. On average, insurers maintain a zero duration gap, thus $D_E = 0$
2. Insurance companies actively increase D_A after an interest rate decrease, implying $C_E < 0$

The duration and convexity of equity could be directly estimated using the following regression (Campbell, Lo, and MacKinlay 1997), where $Ret_{E,t}$ is the equity returns and $\Delta y_{10,t}$ is the change in 10-year Treasury yield:

$$Ret_{E,t} = Q - D_E \Delta y_{10,t} + \frac{C_E}{2} (\Delta y_{10,t})^2 \quad (3)$$

We construct weekly equity returns using the SNL U.S. Insurance Life & Health Equity Index (1994-2017) and regress them on weekly changes in the 10-year treasury yield. Table 1 reports the point estimates of the regression coefficients in the whole sample, which suggests that on average $D_E = -0.057$ and is statistically significant. The convexity is not significantly different from zero. This rejects the predictions from the simplistic duration matching model, and hence the notion that insurers always maintain a zero duration gap.

To better understand the reason behind the failure of the simplest duration matching model, we run the same regression over two-year rolling windows and study the evolution of D_E and C_E. From Figure 4 we see that the lower interest rates in recent years may have pushed the insurers toward $D_E < 0$, consistent with Hartley, Paulson, and Rosen (2016). As we will discuss in later sections of the paper, one reason might be the increase in the duration of liabilities due to the implicit options in some insurance contracts, for example the predetermined withdrawal/surrender value of life insurance products and annuities, which are out of the money in the low interest rate environment. This effect is similar to the effect of the prepayment option in the context of mortgages and banks.
The results also suggest that insurance companies do not fully adjust their asset duration to perfectly match with liability duration every period. More realistically, insurance companies’ duration matching behavior is better described by a “partial adjustment” framework. This framework introduces market frictions: adjusting a large fraction of the portfolio in the corporate bond market in a short period of time is costly, due to price pressures and illiquidity of the market. When liability duration increases, insurance companies try to rebalance their portfolio to increase D_A, but can only do so gradually over time. Moreover, when the interest rate continues to decline and further widens this gap, insurance companies will adjust their asset portfolio duration to chase a “time-varying target”.

4 Duration Matching with Adjustment Costs: The Target Duration Hypothesis

In this section, we provide the theoretical foundations for dynamic duration matching under adjustment costs. We show how the solution of a simple theoretical model leads to a reduced-form model that can be directly estimated in the data using a standard regression approach. Since this reduced-form model turns out to be analogous to econometric models of the target leverage hypothesis in corporate finance (for example, DeAngelo and Roll 2015), we call our framework the target duration hypothesis.

4.1 The Model

The insurance company wants to adjust its portfolio to keep the duration gap close to zero in an effort to reduce its interest rate risk because of regulations that tie risk-based capital surcharges to interest rate risk (Lombardi 2006). In addition, the demand for insurance products depend on their health and riskiness (Koijen and Yogo 2015). However, there are costs of rebalancing the firm’s asset portfolio to make large adjustments in asset duration. For example, selling and purchasing assets in large quantities may have greater marginal cost due to market frictions like price pressures or due to greater cost of effort by investment managers. This intuitive idea of frictions to portfolio adjustment is also confirmed in our discussions with regulators and conforms with the fact that the insurers do not engage in bond acquisitions and disposals in every period. It is a widely held view that duration matching can be costly, as restructuring the balance sheet is time consuming, costly, and generally not

12 Although retail investors might not fully understand the relationship between the duration gap and interest rate risk when they purchase an insurance policy, the risk might affect the ratings of insurers, and hence affect agents’ recommendations to retail investors.
desirable (Saunders and Cornett 2001).

The firm is trying to balance between its desire to minimize the cost of having a duration gap different from zero and its desire to minimize the cost of adjustments to its portfolio duration. As a result, the firm’s objective function at date \(t \) is given by

\[
\max \left[-\frac{\phi}{2} (G(t))^2 + \frac{\psi}{2} (\Delta D_{A,t})^2 \right],
\]

where \(G \) is the duration gap and \(\Delta D_A \) is how much the firm adjusts its asset duration. The first term in this objective function captures the cost of deviating from a zero duration gap, a deviation that increases interest rate risk regardless of the direction of the deviation. The second term captures the increasing marginal cost of adjusting duration regardless of the direction of the duration adjustment.

The duration gap is defined as in Mishkin and Eakins (2017) as \(G \equiv D_A - \frac{L}{A} D_L \), where \(D_A \) is the duration of assets, \(D_L \) is the duration of liabilities, and \(L/A \) is leverage (liabilities/assets). The new asset duration after the firm’s portfolio adjustment is given by \(D_{A,t} = D_{A,t}^0 + \Delta D_{A,t} \) where \(D_{A,t}^0 \) is the duration of legacy assets at time \(t \); that is, \(D_{A,t}^0 \) is what would be the asset duration if the firm were not to make any portfolio adjustment since last period (\(\Delta D_{A,t} = 0 \)) but rather keep the same portfolio as at the beginning of the period. Moreover, since keeping the duration gap close to zero means that the firm should keep the duration of assets \((D_A) \) close to \(\frac{L}{A} D_L \), we define \(D_A^* \equiv \frac{L}{A} D_L \), as the target asset duration. Putting this information together, the objective function of the firm becomes to choose the optimal adjustment to its portfolio duration

\[
\max_{\Delta D_{A,t}} \left[\frac{\phi}{2} \left(D_{A,t}^0 + \Delta D_{A,t} - D_A^* \right)^2 + \frac{\psi}{2} (\Delta D_{A,t})^2 \right].
\]
predetermined payment. When interest rates change, it is more likely that policyholders will act on these options (Berends, McMenamin, Plestis, and Rosen 2013). In particular, lower interest rates increase liability duration by decreasing the likelihood of surrender and increasing the likelihood of paid-up additions. We can capture this relationship by allowing the duration target to depend on interest rates, \(D_A^* (r) = (L/A)D_L (r) \). As a result, the objective function of the firm becomes

\[
\max_{\Delta D_{A,t}} - \left[\frac{\phi}{2} \left(D_{A,t}^0 + \Delta D_{A,t} - D_A^* (r_t) \right)^2 + \frac{\psi}{2} (\Delta D_{A,t})^2 \right].
\] (6)

The FOC of this problem is given by

\[
\Delta D_{A,t} = -\frac{\phi}{\psi + \phi} \left[D_{A,t}^0 - D_A^* (r_t) \right].
\] (7)

This expression is familiar to empirical researchers working with the target leverage hypothesis in corporate finance, e.g., DeAngelo and Roll (2015). In particular, this expression captures how fast the firm reacts to imbalances in the duration of its legacy assets in relation to its target duration, \(D_{A,t}^0 - D_A^* (r_t) \). In analogy with the target leverage hypothesis, \(0 < \frac{\phi}{\psi + \phi} < 1 \) is the speed of adjustment to the target duration. The speed of adjustment is positively related to the cost of missing the duration target, \(\phi \), and negatively related to the adjustment cost, \(\psi \). The parameters \(\phi \) and \(\psi \) are not separately identified in the model, thus they could be collapsed into one parameter in principle. However, we use two parameters to provide a more intuitive explanation of the model.

4.2 Testing the Model

Our data provide comprehensive information regarding the holdings of every insurance company, which we aggregate at the firm-quarter level. We can calculate the duration of legacy assets at the end of a given quarter \(t \), \(D_{A,t}^0 \), from the data directly because we observe the holdings of the insurer at the end of the last quarter\(^{15} \). Similarly, we can calculate the active adjustment to duration as the difference between the duration of the holdings and the duration of the legacy assets at the end of quarter \(t \), \(\Delta D_{A,t} = D_{A,t} - D_{A,t}^0 \).

The duration of liabilities is hard to measure because the liabilities of insurance companies do not have the same level of detail as its assets. Therefore, we model the dependence of the liabilities’ duration on the interest rate as a linear function so that the target duration is given by \(D_A^* (r) = \frac{L}{A} (a + b \times r) \), where \(a > 0 \) and \(b < 0 \) because the duration of liabilities

\(^{15}\)Due to non-zero convexity of the bonds, the duration of legacy assets is affected by changes in interest rates although the holding amounts remain the same as last quarter.
is a positive and decreasing function of interest rates. Plugging this expression into the first order condition of the model,

\[\Delta D_{A,t} = -\frac{\phi}{\psi + \phi} \left[D_{A,t}^0 - D_{A}^* (r_t) \right], \]

we obtain the following expression that can be estimated using a linear regression,

\[
ActiveDurationAdjustment = -\frac{\phi}{\psi + \phi} \times LegacyDuration + \frac{\phi}{\psi + \phi} \times Leverage \times (a + b \times r)
\]
\[
= -\frac{\phi}{\psi + \phi} \times LegacyDuration + \frac{\phi}{\psi + \phi} \times a \times Leverage
\]
\[
+ \frac{\phi}{\psi + \phi} \times b \times Leverage \times r.
\]

It is customary in empirical work to put the uninteracted terms into a regression when interacted terms are present. Therefore, our final regression also includes the uninteracted (stand-alone) interest rate, \(r \), as follows

\[
ActiveDurationAdjustment_{i,t} = const_i + \alpha \times LegacyDuration_{i,t} + \beta \times Leverage_{i,t-1}
\]
\[
+ \gamma \times Leverage_{i,t-1} \times r_t + \delta \times r_t + error_{i,t},
\]

where each observation is at the level of firm \(i \) and quarter \(t \). Since the dependent variable is the adjustment in duration, the firm fixed effect, \(const_i \), controls for any trend in the duration of the holdings that may be correlated with interest rates.

This regression allows us to test the following predictions of our model:

1. The coefficient of \(LegacyDuration \) (\(\alpha = -\frac{\phi}{\psi + \phi} \)) satisfies \(-1 < \alpha < 0\).

2. The coefficient of \(Leverage \) (\(\beta = \frac{\phi}{\psi + \phi} \times a \)) is positive.

3. The coefficient of \(Leverage \times r \) (\(\gamma = \frac{\phi}{\psi + \phi} \times b \)) is negative.

4. The coefficient of stand-alone interest rate \(r \) (\(\delta \)) is zero.

As an additional test of our model, we study the speed of the duration adjustment, \(\frac{\phi}{\psi + \phi} \), for different groups of firms. In particular, we note that the speed of adjustment should be slower for firms that face larger costs of rebalancing their portfolio, \(\psi \). Accordingly, we predict that firms with larger holdings should have a slower speed of adjustment because they need larger trades for the same amount of duration adjustment and thereby face larger costs due to the price pressures generated by their trades. Similarly, we predict that firms
with less liquid portfolios should have a slower speed of adjustment because they face larger trading costs when they want to adjust their portfolios.

As another test, we check if the surrender behavior of the policyholders is consistent with our results. Since the positive link between the policy surrender and interest rate generates a link between the liability duration and interest rates, we test the following two-stage regression

\[
\text{Surrender Ratio}_{i,t} = \theta_i + \eta \times r_t + \varphi \times \text{Legacy Duration}_{i,t} + \varepsilon_{i,t}
\]

\[
\text{Active Duration Adjustment}_{i,t} = \text{const}_i + \alpha \times \text{Legacy Duration}_{i,t} + \beta \times \text{Surrender Ratio}_{i,t} + \text{error}_{i,t}
\]

where we expect \(\eta > 0 \), \(\alpha < 0 \), and \(\beta < 0 \). We estimate similar regressions where the surrender ratio is replaced by lapse ratio.

Finally, we use our estimates in order to calculate the predicted duration of equity by our model and compare it with the empirical interest rate sensitivity of equity returns.

In the next section, we show that these predictions of the model are confirmed in the data, suggesting that the target duration hypothesis is a good representation of the investment decisions of insurance companies.

5 Results

5.1 The Interest Rate and the Option to Surrender and Lapse

We collect data for the amount of policies surrendered and lapsed by each insurance company every year. By dividing these variables by the total amount of policies in force, we obtain a ratio of policies surrendered and lapsed. These ratios are capturing the tendency of policyholders to surrender or lapse their policies. Figure 5 plots the surrender rate and lapse rate against the 10-year treasury yield. We see a strong positive association. In higher interest rate environments there is also a high tendency for policyholders to surrender or lapse their policy. As the interest rate declined from 6.5% to 2%, the surrender rate decreased from 1.8% to 0.8%, and the lapse rate decreased from 7.7% to 4.7%. This is because when interest rates are high, there are better alternative investment opportunities that policyholders can substitute into. On the other hand, since many life insurance and annuity products have embedded guarantees, policyholders would prefer to receive the minimum guaranteed rate on these products in a low-interest-rate environment.

An increase in the surrender rate and the lapse rate will influence the target duration of
an insurance company. An increase in the surrender rate will reduce the liability duration, \(D_L \), because the future liabilities become current liabilities (cash liability). How lapses affect the target duration is less straightforward. If a policyholder stops paying the premium, life insurance policies (whole life, variable universal life, and universal life insurance policies) with existing cash values will use its account value to pay for the unpaid premium. If the account value is insufficient to pay for the policyholder’s premium, then the policy will be considered lapsed. Recall that the target duration is equal to \(D^* = \frac{L}{A} D_L \). Suppose an insurance company has two policies with payouts \(L_1 \) and \(L_2 \) (so that total liability \(L = L_1 + L_2 \)), and duration of the two payouts are \(D_{L1} \) and \(D_{L2} \). The target duration of the insurer is \(D^*_A = \frac{L}{A} \frac{L_1 D_{L1} + L_2 D_{L2}}{L_1 + L_2} = \frac{L_1 D_{L1} + L_2 D_{L2}}{A} \). Suppose, without loss of generality, policy 1 is lapsed; the target duration becomes \(D^*_{A,Lapse} = \frac{L_2}{A} D_{L2} < D^*_A \). This means more lapses will also reduce the target duration of an insurance company.

When interest rates are low, the surrender rate and lapse rate are also low because investors will prefer to hold their policy with its guaranteed payment. This mechanism will increase the target duration of insurance companies. As a result, insurance companies will actively increase their asset duration in order to reduce the duration gap.

5.2 Estimating Parameters in the Partial Adjustment Model

As illustrated in the previous section, we run the following regression:

\[
ActiveDurationAdjustment_{i,t} = \text{const}_i + \alpha \times LegacyDuration_{i,t} + \beta \times Leverage_{i,t-1} \\
+ \gamma \times Leverage_{i,t-1} \times r_t + \delta \times r_t + error_{i,t},
\]

The regression allows us to test the predictions of our model by estimating the parameters. For all insurance companies, we measure book leverage as liabilities divided by total assets from insurance companies’ quarterly filings. For public insurance companies, we get market leverage using \(1 - \frac{E}{A} \), where \(E \) is the market capitalization of stocks, and \(A \) is the total assets. Panels A and B in Table 2 report the estimation results using book and market leverage, respectively.

The estimation supports all four predictions from the model:

1. The coefficient of legacy duration, \(\alpha \), equals \(-0.0625\) and is significant, satisfying \(-1 < \alpha < 0\). Note that \(-\alpha = \frac{\phi}{\psi + \phi} = 0.0625\) is the speed of adjustment. The point estimate implies the time to close half of the duration gap is about 11 quarters (Half Life = \(\frac{\text{ln}(1/2)}{\text{ln}(1 - 0.0625)} \)), all else equal. This suggests that the duration adjustment is gradual, and there are barriers to adjusting the asset portfolio immediately. In section 5.3 we show that insurers facing
different adjustment costs can have very different speeds of adjustment.

2. The coefficient of leverage $\beta = 0.340$ is positive and significant. The point estimate implies the coefficient $a = \frac{\beta}{\phi/(\psi + \phi)} = \frac{0.340}{0.0625} = 5.44$.

3. The coefficient of leverage interacted with the interest rate, $\gamma = -2.981$, is negative and significant. This implies a negative coefficient of $b = \frac{\gamma}{\phi/(\psi + \phi)} = \frac{-2.981}{0.0625} = -47.70$. Remember that $D_A^*(r) = \frac{L}{A}(a + b \times r)$; this means there is a negative long-run relationship between the interest rate and the duration target. If the 10-year Treasury yield goes down by 1 percentage point, the target duration goes up by 0.477×0.9 for the average firm with leverage of 0.9. This is economically meaningful.

4. The coefficient of the stand-alone interest rate r is $\delta = 0.452$ and is statistically indistinguishable from zero.

5.3 Adjustment Cost and the Speed of Adjustment

Our framework is based on the premise that insurance companies face costs when they want to rebalance their portfolios. Such costs depend on the liquidity of an insurer’s portfolio, because more illiquid assets are more costly to trade, as well as the size of the holdings of the insurer, because firms with larger holdings need larger trades and thereby face larger costs due to price pressure for the same amount of duration adjustment. Since a lower cost of rebalancing the portfolios, ψ, allows an insurer to adjust the duration of its assets faster, our model suggests that insurers with more illiquid assets and larger holdings adjust their portfolio at a slower speed, i.e., have lower $\frac{\phi}{\psi + \phi}$.

To test these implications about the relation of the speed of adjustment to holdings size and liquidity precisely, we focus on those insurance companies for which we have detailed trading and volume information on the bonds that constitute more than 90% of their holdings. This approach ensures that the duration and liquidity of the insurers’ holdings are not systematically missing (and hence potentially biased) in a way that is correlated with the size and liquidity of an insurer’s holdings. To first establish that this approach does not introduce a sample selection bias to our previous results, columns (1) of Table 3 and Table 4 show that the results in this restricted sample are similar to the unrestricted sample in Table 2.

To test the first hypothesis, we sort the insurance companies into two groups based on whether the size of their holdings are above or below the sample median in a given quarter. The regression

$$ ActiveDurationAdjustment_{i,t} = const_i + \alpha \times LegacyDuration_{i,t} + \beta \times Leverage_{i,t-1} $$

$$ + \gamma \times Leverage_{i,t-1} \times r_t + \delta \times r_t + error_{i,t} $$
is estimated separately for large insurers and small insurers to identify the coefficients $\alpha = -\frac{\phi}{\psi+\phi}$, of which magnitude gives the speed of adjustment.

Columns (2) and (3) in Table 3 report the coefficients when the regression uses book leverage. For large companies, we have an adjustment speed of $\hat{\phi}_{V} = 0.0519$, implying a half-life of about 13 quarters. For small companies, the adjustment speed increases to 0.0820, implying a half-life of about 8 quarters. The difference between these two groups (0.0302) is statistically significant. The other coefficients in the regressions, $\beta = \frac{\phi}{\psi+\phi} a$ and $\gamma = \frac{\phi}{\psi+\phi} b$, become insignificant in this subsample, except the coefficient of lagged leverage in column (3) for small firms. These coefficients lose significance because we have fewer observations in this restricted sample, and the companies are further split into large and small ones. However, the point estimates for $\beta = \frac{\phi}{\psi+\phi} a$ and $\gamma = \frac{\phi}{\psi+\phi} b$ are also greater in magnitude in column (3) relative to column (2), which is consistent with the conclusion from the estimates of $\alpha = -\frac{\phi}{\psi+\phi}$ that smaller insurance companies have a greater speed of adjustment.

To test the second hypothesis, we first measure the liquidity of insurance companies’ holdings. The quarterly liquidity of each corporate bond i is measured using turnover, a commonly used proxy for liquidity (Datar et al. 1998; Avramov and Chordia 2006; Rouwenhorst 1999). It is defined as the ratio of quarterly total volume traded and amount outstanding, i.e., $Liq_{i,t} = \frac{Volume_{i,t}}{AmtOut_{i,t}}$. Then the liquidity of an insurance company j’s portfolio is measured as the weighted average liquidity of bonds held by the company, $PortfLiq_{j,t} = \sum_i Liq_{i,t} \times AmtHeld_{i,j,t} \sum_i AmtHeld_{i,j,t}$, where $AmtHeld_{i,j,t}$ is the amount of bond i held by insurer j by the end of quarter t. We sort the insurance companies into two groups based on whether their holdings’ liquidity is above or below the sample median in a given quarter.

Columns (4) and (5) in Table 3 report the coefficients when the regression uses book leverage. For insurance companies with less liquid portfolios, we have an adjustment speed of $\hat{\phi}_{V} = 0.0529$, implying a half-life of about 13 quarters. For insurance companies with more liquid portfolios, we have a much faster adjustment speed of 0.0871, which implies a half-life of about 8 quarters. The difference between these two groups (more liquid v.s. less liquid portfolios) is statistically significant. Again, the point estimates in column (5) for $\beta = \frac{\phi}{\psi+\phi} a$ and $\gamma = \frac{\phi}{\psi+\phi} b$ are much greater in magnitude than in column (4).

Finally, Table 4 reports the results for the same analysis using market leverage instead of book leverage. Using market leverage further reduces the sample size by restricting the sample to public insurance companies. The results are qualitatively similar. Columns (2) and (3) suggest a half-life of 13 quarters for large insurers and 7 quarters for smaller insurers, and the difference between the two groups is statistically significant. Columns (4) and (5) in Table 4 suggest a half-life of 16 quarters for insurers with illiquid portfolios and 6.3 quarters for insurers with liquid portfolios.
Overall, Tables 3 and 4 support the prediction from our model that insurance companies with higher adjustment costs may have lower adjustment speeds. Specifically, companies with more illiquid portfolios rebalance their bond portfolios more slowly, and companies with larger portfolios also adjust more gradually, consistent with their effort to minimize liquidity costs and price impact of their trades.

5.4 Active Duration Adjustment and the Option to Surrender and Lapse

The mechanism in our model is that interest rate changes affect policy holders’ surrender and lapse behavior, thus affecting the target duration of insurance companies, which then transmits into active duration adjustment on the asset side. For the mechanism to work, any surrender or lapse caused by interest rate fluctuations should lead to active duration adjustment. The mechanism (for the case of surrenders) is testable using the following two-stage instrumental variable regression:

\[
\text{SurrenderRatio}_{i,t} = \theta_i + \eta \times r_t + \varphi \times \text{LegacyDuration}_{i,t} + \varepsilon_{i,t}
\]

\[
\text{ActiveDurationAdjustment}_{i,t} = \text{const}_i + \alpha \times \text{LegacyDuration}_{i,t} + \beta \times \widehat{\text{SurrenderRatio}}_{i,t} + \text{error}_{i,t}
\]

where \(\widehat{\text{SurrenderRatio}}_{i,t}\) is the first stage regression estimate, which we use in the second stage regression. The \(\text{LegacyDuration}_{i,t}\) is also included in the first stage as is standard in the implementation of an instrumental variable approach in two-stage least squares regression. Our results are robust if we exclude \(\text{LegacyDuration}_{i,t}\) in this regression.

This mechanism creates two predictions:

1. In the first stage regression, we have \(\eta > 0\). When the interest rate is higher, there will be more policy surrenders.

2. In the second stage regression, we have \(\beta < 0\). Companies with a higher (lower) surrender ratio will have to actively decrease (increase) their asset duration.

Similarly, we could test the effect of lapses on active duration adjustment by replacing the surrender ratio with the lapse ratio in the regression.

Table 5 reports the estimation for the two-stage regressions using quarterly data. For both the surrender ratio and the lapse ratio, we find strong support for \(\eta > 0\) and \(\beta < 0\). In the first stage regression, a 1 percentage point decrease in the interest rate is associated with a 0.30 percentage point decrease in the surrender ratio and a 0.68 percentage point de-
crease in the lapse ratio. In the second stage, a 1 percentage point decrease in the predicted surrender ratio is associated with a positive quarterly active duration adjustment of 0.0795. And a 1 percentage point decrease in the lapse ratio is associated with a quarterly active duration adjustment of 0.035. A one standard deviation change in the surrender ratio (0.07) corresponds to a change in the active duration adjustment of 0.56 (=7.95*0.07), and a one standard deviation change in the lapse ratio (0.10) corresponds to a quarterly change in the active duration adjustment of 0.345 (=3.45*0.10). The magnitudes are economically meaningful and comparable to a one standard deviation change in the active duration adjustment (0.55).

Table 6 reports the results for the same two-stage regressions using annual data because the data on surrender and lapse ratios are available annually. The effect of the surrender ratio and the lapse ratio on the active change in duration is about four times compared to the quarterly data as expected.

6 Interest Rate Sensitivity of the Return on Equity: Model vs. Data

As a final test of the model, we compare the interest rate sensitivity of equity returns implied by the model vs. the data. In particular, remember from Section 3.2 that the duration of equity can be calculated by running a regression of stock returns on changes in yields;

\[
Ret_{E,t} = Q - D_E \Delta y_{10,t} + \varepsilon, \tag{9}
\]

where \(D_E\) is the duration of equity and \(\Delta y_{10,t}\) is the change in the 10-year Treasury yield.

Also note that the duration of equity is related to the duration of assets, \(D_A\), and the target duration of equity, \(D_A^*\), via

\[
D_E = G \frac{A}{E} = \left(D_A - \frac{L}{A} D_L \right) \frac{A}{E} = (D_A - D_A^*) \frac{A}{E}. \tag{10}
\]

Using the relationship implied by the model, \(\Delta D_A = -\frac{\phi}{\psi + \phi} [D_A^0 - D_A^*]\), the definition of active duration adjustment, \(\Delta D_A \equiv D_A - D_A^a\), and the relationship between assets, equity, and leverage, \(\frac{A}{E} = 1/(1 - \text{Leverage})\), we obtain

\[
D_E = (D_A - D_A^*) \frac{A}{E} = \left(1 - \frac{\psi + \phi}{\phi} \right) \Delta D_A \left(\frac{1}{1 - \text{Leverage}} \right). \tag{11}
\]
 Thus, we can define the model-implied duration of equity as:

\[D_{\text{Model}}^E \equiv \left(1 - \frac{\psi + \phi}{\phi}\right) \Delta D_A \left(\frac{1}{1 - \text{Leverage}}\right). \] \tag{12}

This model-implied duration of equity, \(D_{\text{Model}}^E \), can be directly computed from the data using this expression and our regression results in Section 5.2. In particular, our regression results directly provide the estimate for \(\frac{\psi + \phi}{\phi} \), which is the inverse of the speed of adjustment, and we can directly observe \(\Delta D_A \), the active duration adjustment, and leverage from the data. We allow the adjustment speed to be time-varying when computing model-implied duration \(D_{\text{Model}}^E \). Specifically, the regression in Section 5.2 is run over a three-year rolling window (the past 12 quarters) to estimate the adjustment speed.

A natural way to test the validity of the model-implied duration of equity is running the following regression in a panel setting:

\[\text{Ret}_{E,i,t} = Q_i - \beta D_{\text{Model}}^{E,i,t} - 1 \Delta y_{10,t} + \varepsilon_{i,t}. \] \tag{13}

where \(\text{Ret}_{E,i,t} \) is the equity return of insurance company \(i \) in quarter \(t \), and \(D_{\text{Model}}^{E,i,t} \) is the model-implied duration of insurance company \(i \) in quarter \(t \), which we compute in our data. Comparing equations (9) and (13), we should observe that \(\beta > 0 \), and more specifically \(\beta \approx 1 \). However, since \(D_{\text{Model}}^E \) is just an estimate, it can suffer from measurement error leading to estimates of \(\beta \) biased toward zero.

Table 7 presents the estimates of this regression. The results are quantitatively similar regardless of whether we use the model-implied equity duration based on book leverage (Panel A) or the one based on market leverage (Panel B). The first column gives the result from a standard panel regression. The reassuring result is that the estimate for the coefficient \(\beta \) is positive, approximately equal to 0.4. However, it is significantly different from 1, which would be the value of \(\beta \) if the model were perfect. This result can at least partially be attributed to the attenuation bias due to measurement error as discussed above. In order to address the attenuation bias, we also run the same regression using an instrumental variable approach as described below.

The first instrument for \(D_{\text{Model}}^E \) (IV1) is lagged \(D_{\text{Model}}^E \), where the identification assumption is that while \(D_{\text{Model}}^E \) is persistent, the errors in the adjustment cost model regressions are not. The second instrument (IV2) for \(D_{\text{Model}}^E \) is

\[D_{\text{Model}}^{E,IV2} = \left(1 - \frac{\psi + \phi}{\phi}\right) \Delta D_A \left(\frac{1}{1 - \text{Leverage}}\right), \] \tag{14}

Table 7 presents the estimates of this regression. The results are quantitatively similar regardless of whether we use the model-implied equity duration based on book leverage (Panel A) or the one based on market leverage (Panel B). The first column gives the result from a standard panel regression. The reassuring result is that the estimate for the coefficient \(\beta \) is positive, approximately equal to 0.4. However, it is significantly different from 1, which would be the value of \(\beta \) if the model were perfect. This result can at least partially be attributed to the attenuation bias due to measurement error as discussed above. In order to address the attenuation bias, we also run the same regression using an instrumental variable approach as described below.

The first instrument for \(D_{\text{Model}}^E \) (IV1) is lagged \(D_{\text{Model}}^E \), where the identification assumption is that while \(D_{\text{Model}}^E \) is persistent, the errors in the adjustment cost model regressions are not. The second instrument (IV2) for \(D_{\text{Model}}^E \) is

\[D_{\text{Model}}^{E,IV2} = \left(1 - \frac{\psi + \phi}{\phi}\right) \Delta D_A \left(\frac{1}{1 - \text{Leverage}}\right), \] \tag{14}
where ΔD_A is the predicted value of active duration adjustment that comes from the regressions in Section 5.2. This instrument is valid because while ΔD_A is highly correlated with the actual value of ΔD_A, it is not correlated with the error term in the regression that introduces the measurement error. Similar to the adjustment speed, the instrument ΔD_A is also calculated using a rolling window of three-years (the past 12 quarters). Columns 2-4 of Table 7 show that using IV1 and IV2 produce very similar results, both when used separately and together, and significantly increase the estimated coefficient from a value of roughly 0.4 to a value of 1.12 to 1.13. These empirical facts support the prediction of the model that $\beta \approx 1$, and shows that the implied-duration of equity from our partial adjustment model is comparable with the equity duration estimated from stock returns.

7 Discussion of Alternative Explanations

Our model of duration matching under adjustment cost can explain why insurance companies deviate from a zero duration gap for extended periods of time and hence conforms with the pattern in Figure 4. This pattern cannot readily be explained by a “reaching for duration” hypothesis because Figure 4 suggests that the duration gap has been negative in the last decade (post-2009) and the insurance companies reaching for yield could close this gap by buying longer duration bonds and simultaneously earning higher yields. Still, one may naturally ask whether there can be alternative explanations for the large negative duration gap in the last decade. In this section, we discuss two explanations alternative to the adjustment cost model.

One explanation for the recent period can be that insurance companies might be already holding the highest duration corporate bonds in the market but these bonds are still not enough to give them perfect duration matching. In other words, there are simply not enough high duration corporate bonds outstanding. Another explanation can be insurance companies might not want to increase their asset duration if higher duration corporate bonds in the market are issued by less risky firms and hence provide lower yields. We investigate these explanations by answering two questions.

First, what would the duration of insurance companies be if they would hold highest duration bonds in the same NAIC category? If insurance companies could significantly increase the duration of their assets by holding highest duration bonds without changing their risk-based capital, it would be hard to argue that there are simply not enough high duration bonds. Second, would the insurance companies earn lower yields if they actually held these highest duration bonds? If they would not earn lower yields by holding higher

\[\text{We thank John Campbell and Ralph Koijen for discussions motivating these alternative explanations.} \]
duration bonds, it would be hard to argue that insurance companies avoid longer duration assets because these assets would provide them with lower investment income.

To answer the first question, we take the total par amount of bonds held by insurance companies and calculate what the duration of their holdings would be if they invested this amount in highest duration bonds. Suppose, without loss of generality, the insurance company holdings at quarter t is given by A_t and the bonds in the market are ranked from high to low duration, $D_{1,t}, D_{2,t}, D_{3,t}, \ldots$, with outstanding amounts $M_{1,t}, M_{2,t}, M_{3,t}, \ldots$ respectively. Since the insurance companies do not hold the whole market there is a value of K for which $\sum_{i=1}^K M_{i,t} = A_t$. Then we can calculate the maximum possible duration that the insurance company assets can have as $D_{A,t}^{max} = (\sum_{i=1}^K D_{i,t} M_{i,t}) / \sum_{i=1}^K M_{i,t}$. The difference between $D_{A,t}^{max}$ and the actual asset duration of the insurance companies, $D_{A,t}$ gives us the “duration slack”, $D_{A,t}^{slack} = D_{A,t}^{max} - D_{A,t}$, i.e. how much more insurance companies could increase their duration.

Panels A and B of Figure [6] plot the duration slack over time for both NAIC1 and NAIC2 categories, i.e. how much extra duration insurance companies could possibly attain within each NAIC rating category. We see a gradual increase in the slack duration in the recent decade in both rating categories. The duration slack is about 7 for both NAIC1 and NAIC2 bonds by 2016. This result suggests insurance companies are still quite far from the maximum asset duration they could achieve, going against the argument that there are not enough long duration bonds in the market.

To answer the second question, we use a similar approach to calculate the “yield slack”, i.e. how much more yield the insurance companies could earn by investing in highest duration bonds in the same NAIC rating category. Using the same ordering of the bonds as before, we can calculate yield slack as $y_{A,t}^{slack} = (\sum_{i=1}^K y_{i,t} M_{i,t}) / \sum_{i=1}^K M_{i,t} - y_{A,t}$ where $y_{i,t}$ is the yield on bond i and $y_{A,t}$ is the yield on assets held by the insurance companies.

Panels C and D of Figure [6] plot the yield slack over time for both NAIC1 and NAIC2 categories. The yield slack has almost always been positive and has been, on average, above one percentage point in the recent decade. This suggest that by holding higher duration bonds, insurance companies could have achieved more than 1 percentage point higher yields than their current portfolio. Therefore, insurance companies would not earn lower yields if they were to include higher duration assets in their portfolio, suggesting that potential loss of investment income is an unlikely reason for not minimizing the duration gap by increasing the asset duration.

In sum, in a frictionless world without adjustment cost, holding a higher-duration portfolio would allow insurance companies to both close the duration gap and obtain higher yield. Therefore, the additional evidence in this section is consistent with our adjustment cost framework.
8 Conclusion

In this paper, we document three stylized facts about the interest rate and life insurance companies’ investment behavior. As the interest rate declines, life insurance companies experience an increase in the excess yield on their corporate bond portfolio relative to the market. Using a matching algorithm to unpack the risk quantities of insurance companies’ portfolio, we find that most of the relationship between interest rates and the excess yield is driven by a duration tilt rather than a credit risk tilt.

Motivated by these stylized facts, we propose a “target duration hypothesis” to explain insurance companies’ investment behavior. According to the hypothesis, insurance companies adjust asset duration to match a time-varying duration target but can only do so gradually due to portfolio adjustment costs. When the interest rates increase, policyholders strategically close out a contract in return for a predetermined payment. This changes insurers’ duration target, which then transmits into active duration adjustment. We confirm several predictions of our model empirically.

The sluggish adjustment of insurance companies’ portfolios to minimize their duration gap poses challenges to financial stability that are distinct from reaching-for-yield behavior. In particular, reaching for yield in a low-interest-rate environment may suggest that central banks should raise interest rates to prevent financial institutions’ excessive risk taking that can generate additional negative effects if the economy experiences adverse shocks. In comparison, duration matching under adjustment costs suggests that the insurance companies are exposed to interest rate risk for an extended period of time even if their goal is to minimize risk. In this framework, the central bank should take into account the sign of the duration gap when deciding to raise interest rates. If the duration gap is positive, then an increase in interest rates can reduce the target duration and hence increase the duration gap further, thereby increasing the interest rate risk of the insurance companies rather than reducing it. In the current environment, however, the equity duration (and hence duration gap) of U.S. insurance companies is negative, thereby giving an additional incentive for the Federal Reserve to raise rates to reduce the duration mismatch faced by insurance companies due to adjustment costs.

Overall, our results suggest interesting questions for future research, such as how adjustment costs affect the investment behavior of other financial institutions and how the optimal policy looks when financial institutions can react to policy changes only gradually.
References

speech, February, 7, 2013.

monetary policy: a speech at the 2011 international conference: Real and financial
linkage and monetary policy, bank of japan, tokyo, japan, june 1, 2011. Technical
report, 2011.
Figure 1. Interest Rate and Excess Yield on Insurance Sector’s Bond Portfolio (1994Q1-2016Q4)

The figure plots the excess yield on life insurance sector’s corporate bond portfolio against the 10-year yield on U.S. Treasury bonds. The excess yield is first constructed at bond-quarter level, for NAIC category 1 and 2 separately. For every bond held by the life insurance sector, we compute the excess yield by subtracting the market average yield (i.e. average yield on all bonds outstanding for a given NAIC category) from the bond yield. Then we aggregate the bond level excess yield to insurance sector level weighting by amount held by the insurance sector. Panel A reports for bonds in NAIC1 category, and Panel B for NAIC2 category.

Panel A

Panel B
Figure 2. Interest Rate and Duration Tilt on Insurance Sector’s Bond Portfolio (1994Q1-2016Q4)

Panel A and Panel B plot the duration matched excess yield (in percentage points) against the 10-year yield (in percentage points) on US treasury for NAIC category 1 and 2 respectively (blue scatters). As a comparison, we also plot the excess yield shown in Figure 1 (orange scatters). The duration-matched excess yield for a given bond is the difference between the bond’s yield and average yield of 10 bonds with closest duration from the market. Then we aggregate the bond level duration-matched excess yield to insurance sector level weighting by amount held by the insurance sector. Panel C and Panel D report the excess duration (duration tilt) of the insurance sector’s corporate bond portfolio, which is the difference between the insurers’ bond portfolio duration and the average duration of all bonds in the market in the same NAIC category. We do this for bonds in NAIC category 1 (Panel C) and NAIC category 2 (Panel D) separately.
Figure 3. Interest Rate and Credit Risk Tilt on Insurance Sector’s Bond Portfolio (1994Q1-2016Q4)

Panel A and Panel B plot the distance-to-default (DD) matched excess yield against the 10-year yield on US Treasury bonds for NAIC category 1 and 2 respectively (blue scatters). As a comparison, we also plot the excess yield shown in Figure 1 (orange scatters). The DD-matched excess yield for a given bond is the difference between the bond’s yield and average yield of 10 bonds with closest DD from the market. Then we aggregate the bond level DD-matched excess yield to insurance sector level weighting by amount held by the insurance sector. Panel C and Panel D use Moody’s EDF to report the excess credit risk (credit risk tilt) of insurance sector’s corporate bond portfolio, which is the difference between holding-amount-weighted credit risk of insurers’ bond portfolio and average credit risk of all bonds in the market in the same NAIC category. We do this for bonds with NAIC category 1 (Panel C) and NAIC category 2 (Panel D) separately.
Figure 4. Time Varying Duration and Convexity of the Life Insurance Sector’s Equity

The figure plots the 2-year rolling estimation of coefficients in the regression $\text{Ret}_{E,t} = Q - D_E \Delta y_{10,t} + \frac{c_E}{2} \left(\Delta y_{10,t} \right)^2$ from 1994 to 2016. The shadow area indicates the 95% confidence interval of the estimated coefficient. Panel A plots the rolling estimation of the coefficient $-D_E$ and Panel B plots the rolling estimation of the coefficient $c_E/2$.

Panel A. 2 year rolling estimate of $-D_E$

Panel B. 2 year rolling estimate of $\frac{c_E}{2}$
Figure 5. Interest Rate and the Option to Surrender and Lapse

The figure plots the surrender rate (Panel A) and lapse rate (Panel B) against the 10-year U.S. Treasury yield. The surrender rate is the amount of insurance policy surrendered each year as a fraction of total insurance contract in force. We aggregate the data from company level to the whole life insurance sector. The lapse rate is constructed similarly.

Panel A

Surrender Rate and 10 Year Treasury Yield

\[y = 0.2431x + 0.0037 \]
\[R^2 = 0.6799 \]

Panel B

Lapse Rate and 10 Year Treasury Yield

\[y = 0.6005x + 0.0391 \]
\[R^2 = 0.6497 \]
Figure 6. Time Series of Duration Slack and Yield Slack (1994Q1-2016Q4)

The figure plots the time series of duration slack and yield slack for both NAIC1 and NAIC2 bonds. Duration slack is defined as the difference between maximum possible duration the insurance company assets can have in the same NAIC category and the actual asset duration of the insurance companies. The yield slack is defined as the difference in yield between the maximum duration portfolio and the insurance companies’ actual portfolio.
Table 1. Estimated Equity Duration and Convexity of the Life Insurance Sector

The table reports the estimated coefficient from the regression
\[Ret_{E,t} = Q - D_E \Delta y_{10,t} + \frac{C_F}{2} (\Delta y_{10,t})^2 \] (1994 to 2016, weekly data)

<table>
<thead>
<tr>
<th></th>
<th>Coeff</th>
<th>(-D_E)</th>
<th>(C_E/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>0.004</td>
<td>0.057***</td>
<td>-0.092</td>
</tr>
<tr>
<td>t-stat</td>
<td>(2.51)</td>
<td>(3.42)</td>
<td>(-0.88)</td>
</tr>
</tbody>
</table>

Table 2. Estimating Parameters in Partial Adjustment Model

The table reports the estimated coefficients in the partial adjustment model from the regression
\[\text{ActiveDurAdj}_{i,t} = \text{const}_t + \alpha \times \text{LegacyDur}_{i,t} + \beta \times \text{Leverage}_{i,t} + \gamma \times \text{Leverage}_{i,t} \times r_{t}^{10} + \delta \times r_{t}^{10} + \epsilon_{i,t} \]. The standard errors are double clustered by firm and quarter. Panel A runs the regression using book leverage constructed using insurance company’s quarterly regulatory filings. Panel B runs the regression using the subset of insurance companies whose parents are publicly listed firms. The book leverage is the book value of liability divided by total asset \(L_A \). The market leverage is constructed using \(1 - \frac{E}{A} \) where \(E \) is the market capitalization at every quarter end. All regressions include firm FE.

Panel A. Book Leverage

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(\text{ActiveDurAdj}_{i,t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LegacyDur(_{i,t})</td>
<td>-0.0625*** (0.00458)</td>
</tr>
<tr>
<td>BkLeverage(_{i,t-1})</td>
<td>0.340*** (0.0560)</td>
</tr>
<tr>
<td>(r_t^{10})</td>
<td>0.452 (0.766)</td>
</tr>
<tr>
<td>BkLeverage(_{i,t-1} \times r_t^{10})</td>
<td>-2.981*** (0.961)</td>
</tr>
<tr>
<td>Observations</td>
<td>59,559</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.053</td>
</tr>
</tbody>
</table>

Panel B. Market Leverage

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(\text{ActiveDurAdj}_{i,t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LegacyDur(_{i,t})</td>
<td>-0.0596*** (0.00972)</td>
</tr>
<tr>
<td>MktLeverage(_{i,t-1})</td>
<td>0.242** (0.104)</td>
</tr>
<tr>
<td>(r_t^{10})</td>
<td>2.104 (1.775)</td>
</tr>
<tr>
<td>MktLeverage \times r_t^{10}</td>
<td>-4.876** (2.260)</td>
</tr>
<tr>
<td>Observations</td>
<td>12,001</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Table 3. The Adjustment Cost and the Speed of Adjustment (Book Leverage)

The table compares the speed of adjustment between insurance companies with high vs. low adjustment costs. We divide the insurance companies into large vs. small groups (columns 2 and 3), and into illiquid vs. liquid groups (columns 4 and 5). The liquidity is measured using quarterly turnover of corporate bonds aggregated to insurer level.

For each group, we estimate the adjustment speed from the regression $ActiveDurAdj_{i,t} = \text{const}_i + \alpha \times LegacyDur_{i,t} + \beta \times BkLeverage_{i,t-1} + \gamma \times BkLeverage_{i,t-1} \times r_{t}^{10} + \delta \times r_{t}^{10} + \epsilon_{i,t}$. The standard errors are double clustered by firm and quarter. Column (1) reports the estimation results for all companies in the restricted sample. Columns (2) and (3) report the regression results for large vs. small companies. And columns (4) and (5) report the regression results for illiquid vs. liquid companies. The book leverage is the book value of liability divided by total asset L/A. All regressions include firm FE.

<table>
<thead>
<tr>
<th></th>
<th>Portfolio Size</th>
<th>Portfolio Liquidity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Large</td>
</tr>
<tr>
<td>LegacyDur_{i,t}</td>
<td>-0.0646***</td>
<td>-0.0519***</td>
</tr>
<tr>
<td></td>
<td>(0.00554)</td>
<td>(0.00786)</td>
</tr>
<tr>
<td>BkLeverage_{i,t-1}</td>
<td>0.388***</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>(0.0689)</td>
<td>(0.130)</td>
</tr>
<tr>
<td>r_{t}^{10}</td>
<td>0.183</td>
<td>-1.235</td>
</tr>
<tr>
<td></td>
<td>(1.136)</td>
<td>(2.190)</td>
</tr>
<tr>
<td>BkLeverage_{i,t-1} * r_{t}^{10}</td>
<td>-4.840***</td>
<td>-2.834</td>
</tr>
<tr>
<td></td>
<td>(1.621)</td>
<td>(2.686)</td>
</tr>
<tr>
<td>Difference between groups</td>
<td>-0.0302***</td>
<td>(0.0114)</td>
</tr>
<tr>
<td>Observations</td>
<td>27,138</td>
<td>13,521</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.078</td>
<td>0.088</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Table 4. The Adjustment Cost and the Speed of Adjustment (Market Leverage)

The table compares the speed of adjustment between insurance companies with high v.s. low adjustment costs. We divide the insurance companies into large vs. small groups (columns 2 and 3), and into illiquid vs. liquid groups (columns 4 and 5). The liquidity is measured using quarterly turnover of corporate bonds aggregated to insurer level.

For each group, we estimate the adjustment speed from the regression

$$\text{ActiveDurAdj}_{i,t} = \text{const}_i + \alpha \times \text{LegacyDur}_{i,t} + \beta \times \text{Leverage}_{i,t} + \gamma \times \text{Leverage}_{i,t} \times r_{t}^{10} + \delta \times r_{t}^{10} + \epsilon_{i,t}$$

The standard errors are double clustered by firm and quarter. Column (1) reports the estimation results for all companies in the restricted sample. Columns (2) and (3) report the regression results for large vs. small companies. And columns (4) and (5) report the regression results for illiquid vs. liquid companies. The market leverage is constructed using $1 - \frac{E}{A}$ where E is the market capitalization at every quarter end. All regressions include firm FE.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>-0.0684***</td>
<td>-0.0487***</td>
<td>-0.0924***</td>
<td>-0.0423*</td>
<td>-0.104***</td>
</tr>
<tr>
<td>Large</td>
<td>(0.0106)</td>
<td>(0.00976)</td>
<td>(0.0174)</td>
<td>(0.0225)</td>
<td>(0.0120)</td>
</tr>
<tr>
<td>Small</td>
<td>0.349</td>
<td>0.262</td>
<td>0.791</td>
<td>0.247</td>
<td>0.547</td>
</tr>
<tr>
<td>Portfolio Liquidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiquid</td>
<td>-0.0206</td>
<td>2.973</td>
<td>-0.438</td>
<td>-2.806</td>
<td>2.193</td>
</tr>
<tr>
<td>Liquid</td>
<td>(4.124)</td>
<td>(3.343)</td>
<td>(9.804)</td>
<td>(5.599)</td>
<td>(5.381)</td>
</tr>
<tr>
<td>Difference between groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5.973</td>
<td>-6.241</td>
<td>-13.44</td>
<td>-0.677</td>
<td>-9.178</td>
</tr>
<tr>
<td></td>
<td>(6.231)</td>
<td>(4.237)</td>
<td>(17.13)</td>
<td>(6.467)</td>
<td>(7.251)</td>
</tr>
<tr>
<td>Observations</td>
<td>6,069</td>
<td>4,063</td>
<td>1,996</td>
<td>2,926</td>
<td>2,920</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.080</td>
<td>0.104</td>
<td>0.092</td>
<td>0.100</td>
<td>0.146</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Table 5. Active Duration Adjustment and Option to Surrender and Lapse (Quarterly)

The table reports the estimation results of the two stage regressions which study how interest rate changes lead to active duration adjustment on the asset side of insurance companies. The first stage regresses the surrender ratio on interest rate and legacy duration. The second stage regresses the quarterly active duration adjustment on predicted surrender ratio and legacy duration. All regressions include firm FE.

Panel A. Active Duration Adjustment and Surrender Ratio

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>1st Stage</th>
<th>2nd Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LegacyDur<sub>t</sub></td>
<td>4.3 × 10<sup>-5</sup> (3.26 × 10<sup>-4</sup>)</td>
<td>LegacyDur<sub>t</sub></td>
</tr>
<tr>
<td>r<sub>t</sub></td>
<td>0.295*** (0.0654)</td>
<td>SurrenderRatio<sub>t</sub></td>
</tr>
<tr>
<td>Observations</td>
<td>51,520</td>
<td>Observations</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.576</td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Panel B. Active Duration Adjustment and Lapse Ratio

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>1st Stage</th>
<th>2nd Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LegacyDur<sub>t</sub></td>
<td>-4.82 × 10<sup>-4</sup> (6.14 × 10<sup>-4</sup>)</td>
<td>LegacyDur<sub>t</sub></td>
</tr>
<tr>
<td>r<sub>t</sub></td>
<td>0.679*** (0.101)</td>
<td>LapseRatio<sub>t</sub></td>
</tr>
<tr>
<td>Observations</td>
<td>51,520</td>
<td>Observations</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.488</td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Table 6. Active Duration Adjustment and Option to Surrender and Lapse (Annual)

The table reports the estimation results of the two stage regressions which study how interest rate changes lead to active duration adjustment on the asset side of insurance companies. The first stage regresses the surrender ratio on interest rate and legacy duration. The second stage regresses the quarterly active duration adjustment on predicted surrender ratio and legacy duration. All regressions include firm FE.

Panel A. Active Duration Adjustment and Surrender Ratio

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>1st Stage</th>
<th>2nd Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(SurrenderRatio_{i,t})</td>
<td>(ActiveDur_{i,t})</td>
</tr>
<tr>
<td>(LegacyDur_{i,t})</td>
<td>2.8 (\times) 10(^{-5}) ((2.86 \times 10^{-4}))</td>
<td>(-0.253***) ((0.0229))</td>
</tr>
<tr>
<td>(r_{t}^{10})</td>
<td>0.304*** ((0.0692))</td>
<td>(-32.94***) ((10.16))</td>
</tr>
<tr>
<td>Observations</td>
<td>12,909</td>
<td>12,889</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.586</td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Panel B. Active Duration Adjustment and Lapse Ratio

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>1st Stage</th>
<th>2nd Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(LapseRatio_{i,t})</td>
<td>(ActiveDur_{i,t})</td>
</tr>
<tr>
<td>(LegacyDur_{i,t})</td>
<td>(-4.74 \times 10^{-4}) ((6.09 \times 10^{-4}))</td>
<td>(-0.261***) ((0.0236))</td>
</tr>
<tr>
<td>(r_{t}^{10})</td>
<td>0.698*** ((0.116))</td>
<td>(-14.31***) ((3.669))</td>
</tr>
<tr>
<td>Observations</td>
<td>12,909</td>
<td>12,889</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.482</td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Table 7. Equity Duration: Model vs Data

The table reports the estimated coefficients from the regression \(\text{Ret}_{i,t} = const_i - \beta \times D_{E,i,t}^{Model} \times \Delta y_{10,t} + \epsilon_{i,t} \). The standard errors are double clustered by firm and quarter. Panel A runs the regression where \(D_{E,i,t}^{Model} \) is calculated using book leverage from insurance company’s quarterly filings. The book leverage is the book value of liability divided by total asset \(\frac{L}{A} \). Panel B runs the same regression using market leverage. The market leverage is constructed using \(1 - \frac{E}{A} \) where \(E \) is the market capitalization at every quarter end. All the right hand side variables are winsorized at 5% to remove the effect of outliers. All regressions include firm FE.

Panel A. Model-Implied Equity Duration based on Book Leverage

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-D_{E}^{Model} \times \Delta y_{10,t})</td>
<td>0.442***</td>
<td>1.120***</td>
<td>1.132***</td>
<td>1.136***</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.335)</td>
<td>(0.412)</td>
<td>(0.372)</td>
</tr>
<tr>
<td>Observations</td>
<td>11,687</td>
<td>11,481</td>
<td>11,571</td>
<td>11,409</td>
</tr>
</tbody>
</table>

Panel B. Model-Implied Equity Duration based on Market Leverage

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-D_{E}^{Model} \times \Delta y_{10,t})</td>
<td>0.408***</td>
<td>1.149**</td>
<td>1.283***</td>
<td>1.266***</td>
</tr>
<tr>
<td></td>
<td>(0.128)</td>
<td>(0.468)</td>
<td>(0.290)</td>
<td>(0.323)</td>
</tr>
<tr>
<td>Observations</td>
<td>11,734</td>
<td>11,493</td>
<td>11,428</td>
<td>11,263</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Appendix

Figure A1. CDS-spread-matched Excess Yield and 10 year Treasury Yield (2002Q1-2016Q4)

Panel A and Panel B plot the CDS-spread-matched excess yield against the 10-year yield on US Treasury for NAIC category 1 and category 2 respectively (blue scatters). As a comparison, we also plot the excess yield shown in Figure 1 (orange scatters). The CDS-matched excess yield for a given bond is the difference between the bond’s yield and average yield of 10 bonds with closest CDS from the market. Then we aggregate the bond level CDS-matched excess yield to insurance sector level weighting by amount held by the insurance sector.