Abstract

We study shareholder voting in a model in which trading affects the composition of the shareholder base. Trading and voting are complementary, which gives rise to self-fulfilling expectations about proposal acceptance and multiple equilibria. Increasing liquidity may reduce prices and welfare, because it allows extreme shareholders to gain more weight in voting. Prices and welfare can move in opposite directions, so the former are an invalid proxy for the latter. Delegating decision-making to the board can improve shareholder value. However, the optimal board is biased, does not represent current shareholders, and may not garner support from the majority of shareholders.

Keywords: Corporate Governance, Voting, Shareholder Rights, Trading, Delegation
JEL classifications: D74, D83, G34, K22
“Shareholders express views by buying and selling shares; (...) The more shareholders govern, the more poorly the firms do in the marketplace. Shareholders’ interests are protected not by voting, but by the market for stock (...).” (Easterbrook and Fischel (1983), pp. 396-397)

1 Introduction

In many advanced economies, regulatory reforms and charter amendments have empowered shareholders and enhanced their voting rights in an effort to constrain managerial discretion. As a result, shareholders not only elect directors, but frequently vote on executive compensation, corporate transactions, changes to the corporate charter, and social or environmental policies. This shift of power from boards to shareholder meetings takes for granted that shareholder voting increases welfare and firm valuations by aligning the preferences of those who make decisions with those for whom decisions are made – a form of “corporate democracy.”

However, unlike the political setting, a key feature of the corporate setting is the existence of the market for shares, which allows investors to choose their ownership stakes based on their preferences and the stock price. Thus, who gets to vote on the firm’s policies is fundamentally linked to voters’ views on how the firm should be run. While the literature has looked at many important questions in the context of shareholder voting, it has so far not examined the effectiveness of voting when the shareholder base forms endogenously through trading.

The main goal of this paper is to examine the link between trading and voting and its implications for companies’ valuations, and to highlight how the effectiveness of shareholder voting vis-a-vis board decision-making is affected by the firm’s trading environment.

Specifically, we study the relationship between trading and voting in a context in which shareholders differ in their attitudes toward proposals. We provide several key insights. First, trading aligns the shareholder base with the expected outcome, even if the expected outcome

\[1\] Cremers and Sepe (2016) make the same observation and review the large legal literature on the subject (see also Hayden and Bodie, 2008). The finance literature has assembled a wealth of empirical evidence on this shift, including the discussion on the effectiveness of say-on-pay votes, surveyed by Ferri and Góx (2018), reforms to disclose mutual fund votes in the United States (e.g., Davis and Kim, 2007; Cvijanovic, Dasgupta, and Zachariadis, 2016), and the introduction of mandatory voting on some takeover proposals in the UK (Becht, Polo, and Rossi, 2016).

\[3\] Karpoff (2001) surveys the earlier and Yermack (2010) the later literature on shareholder voting.
is not optimal. As a result, there can be multiple equilibria, so that similar firms can end up having very different ownership structures and taking very different strategic directions – a source of non-fundamental indeterminacy. Second, changes in the governance or trading environment of the firm can affect welfare and prices in opposite directions, which suggests that price reactions to voting outcomes may not be a valid empirical proxy for their welfare effects. Third, while higher market liquidity increases the ability of shareholders to gain from trade, it may nevertheless reduce welfare by allowing the shareholder base to become more extreme, so that the views of more extreme shareholders prevail over those with more moderate attitudes. Finally, shareholder welfare can be increased if, instead of voting, decisions are delegated to the board of directors. Moreover, the optimal choice between voting and delegation to the board crucially depends on market liquidity and potential shifts in the shareholder base.

We consider a model in which a continuum of shareholders first trade their shares in a competitive market and then vote on a proposal. Each shareholder’s valuation of the proposal depends on an uncertain common value that all shareholders share, but also on a private value that reflects shareholders’ different attitudes toward the proposal. After shareholders trade, but before they vote on the proposal, they observe a signal on the proposal’s common value; the signal is public and there is no asymmetric information. Because of private values, some shareholders are biased toward the proposal and vote to accept it even if the common value is expected to be low; we call them activist shareholders, because they want to change the status quo. By contrast, other shareholders are biased against the proposal and have a higher bar for accepting it; we call them conservative, since they are biased in favor of the status quo. These different attitudes between shareholders may reflect private benefits from their ties with the company or ownership of other firms, different social or political views (“investor ideology”), time horizons, risk aversion, and tax considerations. Some commentators even argue that shareholder voting should be seen as a system to aggregate heterogeneous preferences (Hayden

4Cvijanovic, Dasgupta, and Zachariadis (2016) and He, Huang, and Zhao (2019) analyze the heterogeneity between mutual funds arising from conflicts of interest or common ownership, and Matvos and Ostrovsky (2010) show that funds differ systematically in their support for management. Some shareholders have interests that set them apart from other shareholders, e.g., unions (Agrawal, 2012), family shareholders and founders (Mullins and Schoar, 2016; Villalonga and Amit, 2006), CEOs, and governments. Bolton et al. (2019) and Bubb and Catan (2019) develop different classifications of shareholders’ attitudes to corporate governance. Bushee (1998) and Gaspar, Massa, and Matos (2005) analyze the implications of differences in time horizons between investors. Bagwell (1991) and Desai and Jin (2011) study differences in shareholder tax characteristics. Hayden and Bodie (2008) provide a comprehensive overview of different sources of shareholder heterogeneity.
and Bodie, 2008).

We start by analyzing the setting in which shareholders can trade but cannot vote, e.g., if the decision on the proposal is taken by the board of directors. Because of heterogeneous preferences, shareholders differ in their valuation of the firm, which creates gains from trade. The equilibrium is unique and can be of two types: if the probability of proposal adoption is above a certain threshold, then activist shareholders value the firm more than conservative shareholders and will buy shares from them, whereas in the opposite case, conservatives will buy and activists will sell. Thus, trading allows shareholders who do not agree with the company’s decisions to sell to those shareholders who expect their preferred alternative to be chosen and to benefit from the higher price the buyers are willing to pay.

By contrast, we show that if the decision on the proposal is made by a shareholder vote, i.e., if shareholders first trade and then vote, then multiple equilibria can arise. An activist equilibrium, in which the proposal is accepted with a relatively high probability, can co-exist with a conservative equilibrium, in which the proposal is likely to be rejected. Multiplicity arises because voting and trading are complements: If shareholders expect a high likelihood of proposal adoption, the more conservative shareholders sell to the more activist shareholders. As a result, the composition of the shareholder base after trading is more activist and proposals are approved more often, confirming the ex-ante expectations. Similarly, for the same parameters, if shareholders expect a low likelihood of proposal adoption, then trades occur in the opposite direction, creating a more conservative shareholder base, which approves the proposal less frequently. In both cases, expectations about the voting outcome are self-fulfilling. The multiplicity of equilibria sheds light on a source of non-fundamental indeterminacy and highlights potential empirical challenges in analyzing shareholder voting, since firms with the same fundamental characteristics can have different ownership structures and adopt different policies. We show that such multiplicity is especially likely when the firm faces low trading frictions and high heterogeneity of the initial shareholder base. In the Conclusion we discuss how shareholders may coordinate if there are multiple equilibria.

5Classic examples of multiple equilibrium models in financial economics include Diamond and Dybvig (1983) on bank runs; Calvo (1988) on debt repudiation; and Obstfeld (1996) on currency crises. Some researchers prefer models with unique equilibria (Morris and Shin, 2000), whereas others suggest that multiple equilibria may be a genuine feature of the economic environment, based on theoretical and experimental results (Angeletos and Werning, 2006; Heinemann, Nagel, and Ockenfels, 2004).
Our second set of results explores price and welfare effects. Our analysis highlights that prices and welfare may react differently and in opposite directions to changes to the corporate governance or trading environment of the firm. Intuitively, the decision on the proposal depends on the identity of the marginal voter, which is determined by the post-trade shareholder base and the majority requirement. For example, under simple majority, the marginal voter is the median voter among the post-trade shareholders. The share price depends on how proposal adoption affects the valuation of the marginal trader, who is just indifferent between buying and selling shares. Hence, the share price decreases if the gap between the marginal voter and the marginal trader widens. By contrast, the aggregate welfare depends on how proposal adoption affects the valuation of the average shareholder who holds shares after trading. Thus, welfare decreases if the gap between the marginal voter and the average post-trade shareholder widens.

Prices and welfare react differently to policy changes if the marginal voter is more extreme than the marginal trader, but is less extreme than the average post-trade shareholder. In this case, a policy change, e.g., an increase in the majority requirement, shifts the marginal voter in a way that either moves him closer to the marginal trader but farther from the average post-trade shareholder, or the opposite. Hence, prices increase (decrease) exactly when welfare decreases (increases). This result challenges the notion that there is a close connection between welfare and prices, which the literature often relies on. It casts doubt on the validity of price reactions as an empirical proxy for the welfare effects of shareholder voting on proposals.

Our analysis also uncovers a novel effect of market liquidity on prices and welfare. If shareholders do not vote, e.g., if decisions over the proposal are made by the board, higher liquidity always results in higher prices and higher welfare: Shareholder heterogeneity creates gains from trade, and more liquid markets allow more gains from trade to be realized. However, when decisions are made by a shareholder vote, higher liquidity may be detrimental for both, prices and welfare. Intuitively, as liquidity increases, the shareholder base becomes more extreme — e.g., the post-trade shareholder base becomes more activist in the activist equilibrium. This may widen the gap between the marginal voter and the average shareholder and thereby reduce welfare. Similarly, more trading can depress the stock price, because it widens the gap between the marginal voter and the marginal trader, whose valuation sets prices. Put differently, more liquidity allows more extreme investors to accumulate larger positions and use their votes to
implement their preferred policies. By highlighting this novel effect, our paper contributes to the literature on real effects of financial markets (see Bond, Edmans, and Goldstein (2012) for a survey).

Finally, we examine the optimal allocation of power between boards and shareholder meetings by comparing welfare in the two settings described above – when shareholders trade and vote; and when shareholders trade but decisions are made by the board. The board, like each of the shareholders, is characterized by its attitude toward the proposal.

We define the optimal board as that which maximizes the initial shareholder welfare. We first show that the optimal board is biased and does not reflect the preferences of the initial shareholder base; instead, it maximizes the average valuation of the post-trade shareholder base. Intuitively, the optimal board caters to the preferences of the shareholders with the highest willingness to pay, rather than to the average pre-trade shareholder. Indeed, if the board’s preferences are aligned with those of more extreme shareholders, it also benefits shareholders with more moderate views, who can now sell their shares to those with more extreme views for a higher price. Essentially, the design of an optimal board accounts for gains from trade between shareholders with different views. Importantly, the optimal board, and even a “good enough” board that is sufficiently similar to the optimal board, increases shareholder welfare relative to decision-making via shareholder voting. In other words, the argument that whenever the board is biased, decisions should be delegated to shareholders, is not necessarily correct if shareholders can trade. Similarly, the objective of the optimal board should not be to maximize the share price, since the price reflects only the preferences of the marginal trader and not those of the average shareholder.

Even if it is optimal to delegate decision-making to the board, it is not guaranteed that the majority of shareholders will want to do so. To show this, we extend the model by adding a stage before trading in which shareholders vote on whether to delegate the decision on the proposal to the board. We show that shareholders may choose not to delegate decision-making to a board, not even an optimal board, because with voting before trading, a new externality arises: Shareholders who expect to buy shares after the vote on delegation consider not only the implications of delegation for the long-term value of the firm, but also for the short-term price at which they can buy shares from those shareholders who sell. As a result, short-term trading considerations may push these shareholders to vote against delegation to an optimal
board in order to benefit from a lower price.

Overall, we strike a cautious note on the general movement to “shareholder democracy.” Since shareholders can trade their shares, giving them voting rights creates a complementarity between voting and trading that gives rise to multiple equilibria. There is no guarantee that shareholders can always coordinate on the welfare-dominant equilibrium. Moreover, even the best voting equilibrium is dominated not only by delegation to an optimal board, but also by delegation to a “good enough” board. Finally, shareholders might make incorrect decisions when delegating their decision-making rights to the board if they give excessive weight to short-term trading considerations. As such, we resonate the critical stance of Easterbrook and Fischel (1983) in the opening vignette and expand on these issues in the Conclusion.

The remainder of the paper is organized as follows. Section 2 highlights our contribution and connection to the literature. Section 3 introduces the setup. Section 4 first analyzes two benchmarks that consider trading and voting separately, and then characterizes the equilibrium of the model with trading and voting. Section 5 discusses the implications for shareholder welfare and prices. Section 6 examines the benefits of delegating decision-making authority to the board of directors. Section 7 discusses several extensions, in which we allow for general social preferences toward proposals, introduce a second round of trading after the vote, and relax some other simplifying assumptions of the baseline model. Section 8 concludes. All proofs are gathered in the Appendix. The Online Appendix presents the analysis of the model extensions.

2 Discussion of the literature

Our paper is related to the theoretical literature on shareholder voting (e.g., Maug and Rydqvist, 2009; Levit and Malenko, 2011; Van Wesep, 2014; Malenko and Malenko, 2019; and Bar-Isaac and Shapiro, 2019), which mostly builds on the strategic voting literature (e.g., Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1996)). These papers all assume an exogenous shareholder base and discuss strategic interactions between shareholders based on heterogeneous information, heterogeneous preferences, or both. By contrast, our analysis endogenizes the shareholder base and asks how the voting equilibrium changes if shareholders can trade before voting. Musto and Yilmaz (2003) analyze how adding a finan-
cial market changes political voting outcomes. However, in their model voters trade financial claims but not the votes, which is different from the corporate context. Overall, our paper contributes to this literature by overcoming an important theoretical challenge when analyzing shareholder voting: Shareholders’ valuations and their trading decisions depend on expected voting outcomes, but voting outcomes depend in turn on the composition of the shareholder base, which is endogenous and changes through trading.

We are aware of three strands of literature that integrate the analysis of shareholder voting with trading. The first is the literature on general equilibrium economies with incomplete markets, which recognizes that shareholders with different preferences will be unanimous and production decisions can be separated from consumption decisions (Fisher separation) only if markets are complete and perfectly competitive. With incomplete or imperfectly competitive markets, shareholders will generally disagree about the optimal production plans of the firm, since shareholders are not only interested in profit maximization but also in the influence of firms’ decisions on product prices (e.g., Kelsey and Milne, 1996). Then conflicts of interest arise, governance mechanisms become necessary, and the objective of the firm becomes undefined. The models in this literature introduce mechanisms such as voting, blockholders, or boards of directors to close this gap.

One important insight from this literature is that shareholder disagreement over companies’ policies and governance mechanisms to resolve conflicts between shareholders both originate from incomplete markets. Compared to this earlier literature, we analyze a less general model, which allows us to characterize equilibria beyond existence, analyze the way in which voting and trading interact, derive implications for shareholder welfare, and characterize delegation decisions and their properties.

The second literature analyzes the issues that arise when financial markets allow traders to exercise voting rights without exposure to the firm’s cash flows. Blair, Golbe, and Gerard (1989), Neeman and Orosel (2006), and Kalay and Pant (2009) show that vote-buying can enhance the efficiency of contests for corporate control. Brav and Mathews (2011) build a model of empty voting and conclude that the implications for efficiency are ambiguous and

depend on transaction costs and shareholders’ ability to evaluate proposals. Esö, Hansen, and White (2014) argue that empty voting may improve information aggregation. Our paper is complementary to this literature, since we abstract from derivatives markets and vote-trading and assume one-share-one-vote throughout.8 The political science literature on vote-trading reflects a closely related idea.9 This literature investigates vote-trading as a mechanism to address a limitation of standard voting rules, which do not reflect the intensity of preferences (e.g., see Casella, Llorente-Saguer, and Palfrey (2012), Lalley and Weyl (2018), and references therein). However, in this literature, agents trade votes but not their exposure to the voting outcome, whereas in our model cash-flows are tied to voting rights and always traded in the same proportion. This feature of most publicly traded stocks is critical for our main results.

The third literature analyzes blockholders who form large blocks endogenously through trading and affect governance through voice or exit (see Edmans (2014) and Edmans and Holderness (2017) for surveys). However, this literature does not focus on the complementarities and collective action problems that arise in our model, as the majority of this literature focuses on models with a single blockholder. Relative to existing governance models of multiple blockholders, our paper analyzes the feedback loop between voting and trading and how this affects the choice between delegation to a board and shareholder voting.10,11

Finally, our paper contributes to the literature on the allocation of control between shareholders and management (e.g., Burkart, Gromb, and Panunzi (1997), Harris and Raviv (2010), and Chakraborty and Yilmaz (2017)) by showing how the optimal balance of power depends on the firm’s trading environment.

8Burkart and Lee (2008) provide a comprehensive survey of the theoretical literature on the one-share-one-vote structure.

9The endogeneity of the voter base in our model also connects our paper to the literature on voter participation and voluntary voting (e.g., Palfrey and Rosenthal, 1985; Krishna and Morgan, 2011, 2012).

10See Zwiebel, 1995; Noe, 2002; Edmans and Manso, 2011; Dhillon and Rossetto (2015); and Brav, Dasgupta, and Mathews, 2017.

11Garlappi, Giammarino, and Lazrak (2017; 2019) analyze group decision-making about investment projects and show how trade among group members may overcome inefficiencies from differences in beliefs. These papers focus on the dynamics of group decision-making and do not feature the mechanisms and results that arise in our model.
3 Model

Consider a firm with a continuum of measure one of risk-neutral shareholders. Each shareholder is endowed with \(e > 0 \) shares. Shareholders choose between two alternative policies by voting on a proposal, such that one policy is implemented if the proposal is rejected \((d = 0) \), and another policy is implemented if it is accepted \((d = 1) \). For example, by voting on a proposal to remove a takeover defense, shareholders might induce the firm to cut R&D and effectively change its investment strategy from a longer-term to a shorter-term policy.

Preferences. Shareholders’ preferences over the two policies depend on a common value component and on shareholders’ private values. The common value is determined by an unknown state \(\theta \in \{-1, 1\} \): if \(\theta = -1 \) \((\theta = 1)\), rejecting the proposal and implementing the first policy is value-increasing (decreasing); and, vice versa, if \(\theta = 1 \) \((\theta = -1)\), accepting the proposal and implementing the second policy is value-increasing (decreasing). Thus, for the common value it is critical that the policy matches the state, i.e., that the proposal is accepted if and only if \(\theta = 1 \). Similar setups are employed in the strategic voting literature, e.g., Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1996). For example, in the case of a proposal that would lead to cutting R&D, \(\theta = 1 \) \((\theta = -1)\) corresponds to shorter-term (longer-term) projects having a higher NPV, so that approving (rejecting) the proposal is value-increasing if and only if \(\theta = 1 \) \((\theta = -1)\).

In addition to the common value component, shareholders have private values over the two policies, which reflect the heterogeneity in their preferences. For brevity and ease of exposition, we refer to these private values as biases and denote them by \(b \in [-\bar{b}, \bar{b}] \). A shareholder with bias \(b > 0 \) \((b < 0)\) receives additional (dis)utility if the proposal is accepted and the second policy is adopted, and experiences an additional loss (gain) if the proposal is rejected and the first policy is adopted. We assume that the initial shareholder base, i.e., the cross section of shareholders’ biases \(b \), is given by a differentiable cdf \(G \), which is publicly known and has full support with positive density \(g \) on \([-\bar{b}, \bar{b}] \), where \(\bar{b} > 0 \) measures the heterogeneity among shareholders.

Differences in shareholders’ preferences can stem from time horizons, private benefits, different social or political views, common ownership, risk aversion, or tax considerations. As noted in the introduction, the evidence for preference heterogeneity is pervasive. In the R&D
example, suppose that b captures variation among shareholders’ time horizons, and a larger b reflects a shorter horizon, i.e., more impatience. Then, shareholders with a larger b get more additional utility from a shorter-term strategy and more disutility from a longer-term strategy relative to shareholders with a smaller b.

Overall, we assume that the value of a share from the perspective of shareholder b is

$$v(d, \theta, b) = v_0 + (\theta + b)(d - \phi) = v_0 + \begin{cases}
\phi(-\theta - b) & \text{if } d = 0, \\
(1 - \phi)(\theta + b) & \text{if } d = 1,
\end{cases}$$

(1)

where $v_0 \geq 0$ captures the part of valuation that is not affected by the decision between the two policies and is sufficiently large to ensure that shareholder value is always non-negative. Parameter $\phi \in [0, 1]$ is the weight of the first policy (proposal rejection), and $1 - \phi$ is the weight of the second policy (proposal acceptance). In the symmetric case, $\phi = \frac{1}{2}$, and from the perspective of shareholder b, the gain from making the right decision equals the loss from making the wrong decision. This captures situations in which the two policies are in conflict with each other — for example, a choice between a short-term vs. long-term investment project (for a proposal that would cut R&D), a choice between a shareholder-friendly vs. management-friendly governance structure (for a proposal to destagger the board), or a choice between a more vs. less socially responsible corporate strategy (for social and environmental proposals).

In other cases, in which the two policies are not as related, shareholders may only disagree in their assessment of just one of them, so that ϕ is close to 0 or 1. For example, $\phi = 0$ captures a proposal to invest in a new project that is completely independent of the firm’s assets in place, when the valuation of assets in place is common knowledge and the same for all shareholders. Most of our results hold for any ϕ, and we discuss the specific results for which this parameter plays a more important role below.

Because of private values, shareholders apply different hurdle rates for accepting the proposal. Specifically, for any ϕ, a shareholder with bias b would like the proposal to be accepted if and only if his expectation of $\theta + b$ is positive. To facilitate the exposition, we will refer to the first policy, which is implemented upon the rejection of the proposal, as the status quo, and to high (low) b shareholders as “activist” (“conservative”), because a high b is associated with a bias against (toward) the status quo.
Timeline. The game has two stages: first, trading and then, voting. This timing allows us to focus on the endogeneity of the voter base, which is crucial for our analysis. At the outset, all shareholders are uninformed about the value of \(\theta \); they all have the same prior on its distribution, which we specify below. Then trading takes place. Short sales are not allowed. In the baseline model, shareholders can either sell any number of shares up to their entire endowment \(e \), or buy any number of shares up to a fixed finite quantity \(x > 0 \), or not trade. The quantity \(x \) captures trading frictions (e.g., illiquidity, transaction costs, wealth constraints), which limit shareholders’ ability to build large positions in the firm.

In equilibrium the market must clear, and we denote the market clearing share price by \(p \). To ease the notation in the analysis below, we define

\[
\delta \equiv \frac{x}{x + e},
\]

which captures the relative strength with which shareholders can buy shares. We interpret \(\delta \) as market liquidity, in particular, as market depth. We assume that shareholders do not trade if they are indifferent between trading at the market price \(p \) and not trading at all. This tie-breaking rule could be rationalized by adding arbitrarily small transaction costs.\(^{12}\)

After the market clears, but before voting takes place, all shareholders observe a public signal about the state \(\theta \). This public information may stem from disclosures by management, analysts, or proxy advisors. Let \(q = \mathbb{E}[\theta | \text{public signal}] \) be the shareholders’ posterior expectation of the state following the signal. For simplicity and ease of exposition, we assume that the public signal is \(q \) itself, and that \(q \) is distributed according to a differentiable cdf \(F \) with mean zero and full support with positive density \(f \) on \([-\Delta, \Delta]\), where \(\Delta \in (0, 1) \). Thus, the ex-ante expectation of \(\theta \) is zero. The symmetry of the support of \(q \) around zero is not necessary for any of the main results. To simplify the exposition, it is useful to introduce

\[
H(q) \equiv 1 - F(q).
\]

At the second stage, after observing the public signal \(q \), each shareholder votes the shares

\(^{12}\)The purpose of this tie-breaking rule is to exclude equilibria that exist only in knife-edge cases. However, as the proof of Proposition 3 shows, other tie-breaking rules also eliminate these knife-edge equilibria — for example, rules under which indifferent shareholders always sell or always buy shares.
he owns after the trading stage, based on his preferences and the realization of \(q \). Hence, we assume that the record date, which determines who is eligible to participate in the vote, is after the trading stage. Shareholders vote either in favor or against the proposal. Each share has one vote. If a proportion of more than \(\tau \in (0, 1) \) of all shares are cast in favor of the proposal, the proposal is accepted. Otherwise, the proposal is rejected.

We analyze subgame perfect Nash equilibria in undominated strategies of the induced voting game. The restriction to undominated strategies is common in voting games, which typically impose the equivalent restriction that agents vote as-if-pivotal. This restriction implies that shareholder \(b \) votes his shares in favor of the proposal if and only if

\[
b + q > 0.
\]

Extensions. Our baseline model makes some simplifying assumptions for tractability and ease of exposition. In Section 7 we relax some of these assumptions to discuss the following extensions: (1) investors’ social concerns, such that proposals can have an impact on investors’ welfare irrespective of their ownership in the firm, e.g., for proposals with a social or environmental impact; (2) a second round of trade after the vote, which allows us to discuss price reactions to the voting outcome; (3) shareholders’ endowment \(e \) and their ability to trade \(x \) that can vary with their bias \(b \); (4) trading frictions that limit shareholders’ ability to sell their entire endowment \(e \). Our main results continue to hold in all four extensions.

13 If the record date were set prior to the trading stage, then shareholders who had sold their shares could still vote. We do not analyze such “empty voting.”

14 We abstract from abstentions because institutional investors have incentives to cast their votes in order to fulfill the fiduciary duties to their beneficiaries.

15 There is heterogeneity across companies with respect to the majority requirement used in shareholder voting. While a large fraction of companies use a simple majority rule, many companies still have supermajority voting for issues such as mergers or bylaw and charter amendments, and supermajority requirements are often a subject of debate (see Papadopoulos, 2019, and Maug and Rydqvist, 2009).

16 See, e.g., Baron and Ferejohn (1989) and Austen-Smith and Banks (1996). This restriction helps rule out trivial equilibria, in which shareholders are indifferent between voting for and against because they are never pivotal.
4 Analysis

We solve the model by backward induction. Before analyzing the full model with trading and voting, we first analyze two benchmark cases to build the intuition, one in which shareholders vote but do not trade (Section 4.1) and one in which they trade but do not vote (Section 4.2).

We start by showing that, regardless of trading, proposal approval at the voting stage takes the form of a simple cutoff rule:

Lemma 1. If the proposal is decided by a shareholder vote, then in any equilibrium, there exists q^* such that the proposal is approved by shareholders if and only if $q > q^*$.

Intuitively, this result follows because all shareholders, regardless of their biases, value the proposal more if it is more likely to increase value, i.e., if $\theta = 1$ is more likely.

4.1 Voting without trading

To begin, we develop the benchmark case in which shareholders vote but do not trade. Lemma 1 also applies in this case. The shareholder base at the voting stage is characterized by the pre-trade distribution G, and the proposal is approved if and only if a fraction of at least τ of the initial shareholders vote in favor. Since shareholders with a larger bias value the proposal more, it is approved if and only if the $(1-\tau)$-th shareholder, who has a bias of $G^{-1}(1-\tau)$, votes for the proposal. Hence, the cutoff q^* is given by the expression in Proposition 1:

Proposition 1 (voting without trading). If the proposal is decided by a shareholder vote but shareholders do not trade, there always exists a unique equilibrium. In this equilibrium, the proposal is approved by shareholders if and only if $q > q_{NoTrade}$, where

$$q_{NoTrade} \equiv -G^{-1}(1-\tau).$$ \hspace{1cm} (5)

Figure 1 illustrates the equilibrium of Proposition 1 and plots the cdf G against the private values (biases) b. The shareholder with bias $b = -q_{NoTrade}$ is the *marginal voter*. The identity of this shareholder is crucial for the decision on the proposal because his vote always coincides with the voting outcome. If $q = q_{NoTrade}$, there are $G(-q_{NoTrade}) = 1 - \tau$ shareholders for whom $b + q < 0$, who vote against (“Reject” region of the figure), and τ shareholders who vote
in favor of the proposal (“Accept” region). Thus, the marginal voter is the shareholder who is indifferent between accepting and rejecting the proposal if exactly \(\tau \) shareholders vote to accept it.

![Figure 1 - Equilibrium characterization of the No-trade benchmark](image)

4.2 Trading without voting

In the next step, we consider the second, complementary benchmark case, in which we have trading without voting. In this case, trading occurs as in the general model but then, after the public signal \(q \) is revealed, the decision on the proposal is exogenous. For concreteness, and to prepare for our later discussion of delegation in Section 6, we assume that the decision is made by the board of directors. We abstract from collective decision-making within the board and treat it as one single agent who acts like a shareholder with bias \(b_m \in [-\bar{b}, \bar{b}] \) and valuation \(v(d, \theta, b_m) \), so that it approves the proposal if and only if \(b_m + q > 0 \). Motivated by Lemma 1, we cast the following discussion in terms of a general exogenous decision rule \(q^* \); for the decision rule of the board we have \(q^* = -b_m \).

Denote by \(v(b, q^*) \) the valuation of a shareholder with bias \(b \) prior to the realization of \(q \), as a function of the cutoff \(q^* \). Then

\[
v(b, q^*) = \mathbb{E} [v(1_{q>q^*}, \theta, b)], \tag{6}
\]

where the indicator function \(1_{q>q^*} \) obtains a value of one if \(q > q^* \) and zero otherwise, and
v (d, θ, b) is defined by (1). Notice that v (b, q*) can be rewritten as

\[v(b, q*) = v_0 + b (H(q^*) - \phi) + H(q^*) \mathbb{E}[\theta|q > q^*], \]

(7)

and that it increases in b if and only if the probability of proposal approval, H (q*) = Pr [q > q*], is greater than \(\phi \). In words, activist shareholders with a large bias toward the proposal value the firm more than conservative shareholders with a small bias if and only if the proposal is sufficiently likely to be approved. At the trading stage, the shareholder optimally buys \(x \) shares if his valuation exceeds the market price, \(v(b, q^*) > p \), sells his endowment of \(e \) shares if \(v(b, q^*) < p \), and does not trade otherwise. These observations lead to the following result.

Proposition 2 (trading without voting). There always exists a unique equilibrium of the game in which the proposal is decided by a board with decision rule \(q^* \).

(i) If \(H(q^*) > \phi \), the equilibrium is “**activist:**” a shareholder with bias \(b \) buys \(x \) shares if \(b > b_a \) and sells his entire endowment \(e \) if \(b < b_a \), where

\[b_a \equiv G^{-1}(\delta). \]

(8)

The share price is given by \(p = v(b_a, q^*) \).

(ii) If \(H(q^*) < \phi \), the equilibrium is “**conservative:**” a shareholder with bias \(b \) buys \(x \) shares if \(b < b_c \) and sells his entire endowment \(e \) if \(b > b_c \), where

\[b_c \equiv G^{-1}(1 - \delta). \]

(9)

The share price is given by \(p = v(b_c, q^*) \).

(iii) If \(H(q^*) = \phi \), no shareholder trades, and the price is \(p = v_0 + \phi \mathbb{E}[\theta|q > q^*] \).

In equilibrium, the firm is always owned by investors who value it most, which gives rise to two different types of equilibria. In part (i) of Proposition 2, the proposal is approved with a relatively high probability, \(H(q^*) > \phi \), so activist shareholders value the firm more than conservatives. Hence, the equilibrium is “activist” in the sense that activist shareholders buy
shares from conservatives, and the post-trade shareholder base has a high preference b for the proposal. In part (ii), the proposal is approved with a relatively low probability. Hence, the equilibrium is “conservative” in the sense that conservative shareholders buy from activists, creating a post-trade shareholder base that has a low preference b for the proposal.

Parameter ϕ determines how high the likelihood of proposal approval must be for activists or for conservatives to have the highest valuation. For example, if $\phi \approx \frac{1}{2}$, such as for a proposal that would change the investment strategy from long-term to short-term, then short-term (long-term) shareholders have the highest valuation if and only if the likelihood of proposal approval is high (low) enough. In contrast, if $\phi \approx 0$, such as in a vote for a new project when assets in place are valued equally by all shareholders, then shareholders who favor the project (i.e., activists) have the highest valuation for any positive probability that the project is adopted.

In the activist (conservative) equilibrium, the market-clearing condition determines the “marginal trader” with bias b_a (b_c). For example, in the activist equilibrium, the $1-G(b_a)$ more activist shareholders with $b > b_a$ buy x shares each; the $G(b_a)$ more conservative shareholders with $b < b_a$ sell e shares each; and the marginal trader b_a is indifferent between buying and selling given the market price. Hence, market clearing requires $x \cdot (1 - G(b_a)) = e \cdot G(b_a)$, or $G(b_a) = \delta$ from (2), which gives the marginal trader b_a as in (8). The equilibrium share price $p = v(b_a, q^*)$ is determined by the identity of the marginal trader and equals his valuation of the firm, which depends on the decision rule q^*. Any investor with $b \neq b_a$ values the firm differently from the marginal trader, and hence his valuation is either higher or lower than the market price, creating gains from trade. This equilibrium is illustrated in the left panel of Figure 2. The conservative equilibrium is derived similarly and is displayed in the right panel of Figure 2. In what follows, we ignore the knife-edge case (iii), in which $H(q^*) = \phi$ and no shareholder trades.\footnote{In Section 4.3 we show that when trade is allowed, this knife-edge equilibrium does not exist.}

The identity of the marginal trader depends on liquidity, as summarized in the next result.

Corollary 1. The marginal trader becomes more extreme when liquidity is higher, i.e., b_a increases in δ and b_c decreases in δ. In addition, $b_c < b_a$ if and only if $\delta > 0.5$.

Corollary 1 follows directly from expressions (8) and (9). To see the intuition, notice that when liquidity δ is high, shareholders with the strongest preference for the likely outcome,
i.e., those with a large bias in the activist equilibrium and those with a small bias in the conservative equilibrium, have the highest willingness to pay and buy the maximum number of shares. We sometimes refer to these shareholders as “extremists.” Other shareholders with more moderate views (i.e., \(b \in (b_c, b_a) \)), take advantage of this opportunity and sell their shares to shareholders with extreme views. In contrast, when liquidity is low, only shareholders with the most extreme view against the likely outcome find it beneficial to sell their shares at a low price, while moderate shareholders (i.e., \(b \in (b_a, b_c) \)) always buy shares. This explains why the marginal trader in an activist equilibrium is more activist than in the conservative equilibrium if and only if liquidity is sufficiently high (\(\delta > 0.5 \)).

Overall, if liquidity is high, the post-trade ownership structure is dominated by extremists, who can translate their strong views on the proposal into large positions in the firm. In contrast, when liquidity is low, the post-trade shareholder base is relatively moderate and closer to the initial shareholder base. Below we show that this feature has significant implications for prices and welfare when the decision on the proposal is made by a shareholder vote.

Figure 2 - Equilibrium characterization of the No-vote benchmark

4.3 Equilibrium with trading and voting

We now analyze the general model, in which shareholders trade their shares, and those who own the shares after the trading stage vote those shares at the voting stage. In Section 4.3.1, we characterize the equilibria and discuss their properties. Then, in Section 4.3.2, we discuss
the complementarity between trading and voting and derive the circumstances under which multiple equilibria exist.

4.3.1 Existence and characterization of equilibria

According to Lemma 1, the decision rule on the proposal takes the form of an endogenous cutoff \(q^* \), and the proposal is approved if and only if \(q > q^* \), i.e., with probability \(H(q^*) \). The value of the firm for shareholder \(b \) as a function of \(q^* \) is again given by (7). As in the no-vote benchmark, \(v(b,q^*) \) is increasing in \(b \) if and only if \(H(q^*) > \phi \). At the trading stage, a shareholder with bias \(b \) buys \(x \) shares if \(v(b,q^*) > p \), sells his endowment of \(e \) shares if \(v(b,q^*) < p \), and does not trade otherwise. However, differently from the no-vote benchmark, the decision rule is now tightly linked to the trading outcome. In particular, the trading stage determines the composition of the shareholder base at the voting stage, which, in turn, determines the cutoff \(q^* \) and the probability that the proposal is approved. Therefore, there is a feedback loop between trading and voting: Shareholders’ trading decisions depend on expected voting outcomes, and voting outcomes depend on how trading changes the shareholder base. The next result fully characterizes the equilibria of the game.

Proposition 3 (trading and voting). An equilibrium of the game with trading and voting always exists.

(i) An **activist** equilibrium exists if and only if \(H(q_a) > \phi \), where

\[
q_a \equiv -G^{-1}(1 - \tau(1 - \delta)).
\]

In this equilibrium, a shareholder with bias \(b \) buys \(x \) shares if \(b > b_a \) and sells his entire endowment \(e \) if \(b < b_a \), where \(b_a \equiv G^{-1}(\delta) \). The proposal is accepted if and only if \(q > q_a \), and the share price is given by \(p_a = v(b_a,q_a) \).

(ii) A **conservative** equilibrium exists if and only if \(H(q_c) < \phi \), where

\[
q_c \equiv -G^{-1}((1 - \delta)(1 - \tau)).
\]

In this equilibrium, a shareholder with bias \(b \) buys \(x \) shares if \(b < b_c \) and sells his entire
endowment e if $b > b_c$, where $b_c = G^{-1}(1 - \delta)$. The proposal is accepted if and only if $q > q_c$, and the share price is given by $p_c = v(b_c, q_c)$.

(iii) Other equilibria do not exist.

Note that $q_c > q_a$: the cutoff for accepting the proposal is higher in the conservative equilibrium than in the activist equilibrium. Accordingly, the probability of accepting the proposal is higher in the activist equilibrium, i.e., $H(q_a) > H(q_c)$. Figure 3 illustrates both equilibria and combines the respective elements from Figures 1 and 2.

The logic behind both equilibria is the same as in the no-vote benchmark in Proposition 2. In the activist equilibrium displayed in the left panel of Figure 3, the cutoff q_a is relatively low ($-q_a$, the bias of the marginal voter, is high) and the proposal is likely to be approved. Hence, the term $H(q_a) - \phi$ in (7) is positive, so conservative shareholders who are biased against the proposal, $b < b_a$, sell their endowment to shareholders who are biased toward the proposal, $b > b_a$. The marginal trader b_a is determined by the exact same market clearing condition described in Proposition 2. Hence, $1 - G(b_a) = 1 - \delta$ shareholders own the firm after trading, and of these, at least $\tau (1 - \delta)$ need to approve the proposal to satisfy the majority requirement, so that $1 - G(-q_a)$ shareholders vote in favor, with q_a defined by (10). Importantly, and differently from the no-vote benchmark, the cutoff q_a is now endogenously low: the fact that the post-trade shareholder base consists of shareholders who are biased toward the proposal, $b > b_a$, implies that the post-trade shareholders will optimally vote in favor of the proposal unless their expectation q is sufficiently low to offset their bias. Hence, the expectations about the high likelihood of proposal approval become self-fulfilling.

Similarly, in the conservative equilibrium displayed in the right panel of Figure 3, shareholders expect a low probability of approval (i.e., q_c is high). Hence, the term $H(q_c) - \phi$ in (7) is negative, and shareholders with $b < b_c$ value the firm more and buy shares from shareholders with $b > b_c$. Since the post-trade shareholder base consists of shareholders who are biased against the proposal and are more likely to reject it, expectations about the low probability of approval are self-fulfilling.

Figure 3 also illustrates that the marginal voter is always more extreme than the marginal trader, i.e., in the activist (conservative) equilibrium, the marginal voter is more activist (conservative) than the marginal trader: $-q_a > b_a (-q_c < b_c)$. These relationships follow from
Proposition 3 and play an important role in the analysis of welfare and prices in Section 5.

Similar to Lemma 1, the marginal trader becomes more extreme as liquidity increases. In addition, (10) and (11) imply that the marginal voter also becomes more extreme: \(-q_a\) (\(-q_c\)) increases (decreases) in \(\delta\). The extreme to which the marginal trader and the marginal voter converge as liquidity increases depends on the type of equilibrium:

Corollary 2. The marginal voter becomes more extreme as liquidity increases. In the activist (conservative) equilibrium, \(-q_a\) increases in \(\delta\), and both \(-q_a\) and \(b_a\) converge to \(b\) as \(\delta \rightarrow 1\) (\(-q_c\) decreases in \(\delta\), and both \(-q_c\) and \(b_c\) converge to \(-b\) as \(\delta \rightarrow 1\)).

Intuitively, when liquidity is high, the post-trade shareholder base is dominated by extremists, and their more extreme preferences push the firm’s decision-making to the extreme. Therefore, our analysis uncovers a new effect of liquidity on governance through voice.

![Figure 3 - Equilibrium characterization of the model with trading and voting](image)

4.3.2 Multiple equilibria

As the above discussion shows, the introduction of the voting stage creates self-fulfilling expectations: Shareholders with a preference for the expected outcome buy shares, which in turn
makes their preferred outcome more likely. Voting also creates strategic complementarities at the trading stage between agents with similar preferences. For example, if an activist shareholder with a large bias towards the proposal is more likely to buy shares and, therefore, more likely to vote for the proposal, this increases the likelihood of proposal acceptance and hence the payoff from buying for another activist shareholder. This complementarity, and the presence of self-fulfilling expectations, suggest that the two equilibria—conservative and activist—can coexist. Indeed, according to Proposition 3, both equilibria exist whenever
\[H(q_c) < \phi < H(q_a). \]

The multiplicity of equilibria can be interpreted as an additional source of volatility if agents change expectations for exogenous reasons. Hence, without any change in the fundamentals of the firm, prices and voting outcomes may change if agents form different expectations and, accordingly, coordinate on a different equilibrium. We thus treat multiple equilibria as a source of non-fundamental uncertainty or indeterminacy. This indeterminacy underscores potential empirical challenges in analyzing shareholder voting and could explain the mixed evidence about the effect of voting on proposals on shareholder value.\(^{18}\) The same proposal voted on at two firms with similar characteristics and fundamentals could have very different voting outcomes and valuation effects.

The next result highlights the factors that contribute to the multiplicity of equilibria.

Proposition 4. The conservative and the activist equilibria coexist if the market is liquid (sufficiently high \(\delta\)); if the voting requirement is in an intermediate interval, \(\tau \in (\underline{\tau}, \bar{\tau})\); if the expected voting outcome is critical for whether activist or conservative shareholders value the firm more, \(\phi \in (H(q_c), H(q_a))\); and only if heterogeneity of the initial shareholder base is large (sufficiently large \(\bar{b}\)).

Intuitively, the multiplicity of equilibria arises from the possibility that expectations become self-fulfilling. If liquidity \(\delta\) is large, then extreme shareholders accumulate large positions in

\(^{18}\)Karpoff (2001) surveys the earlier literature, and Yermack (2010) and Ferri and Göx (2018) review some of the later studies. Cunat, Gine, and Guadalupe (2012) also summarize that “(...) the range of results in the existing literature varies widely, from negative effects of increased shareholder rights (...) to very large and positive effects on firm performance (...)” (pp. 1943-44).
the firm, the firm experiences large shifts in the shareholder base, and the direction of these shifts depends on shareholders’ expectations about the proposal outcome. As the post-trade shareholder base and the marginal voter in each equilibrium become more extreme, the interval in (12) in which the two equilibria coexist expands. Conversely, for low liquidity, both types of equilibria converge to the no-trade benchmark as \(\delta \to 0 \) (\(q_a \to q_\text{NoTrade} \) and \(q_c \to q_\text{NoTrade} \)), so the interval in (12) in which multiple equilibria exist vanishes.

Multiple equilibria are also less likely to exist if the governance structure requires either very large or very small majorities to approve a decision: If \(\tau \) is sufficiently large (small), then an activist (conservative) equilibrium is unlikely to exist because approval of the proposal requires almost all shareholders to vote in its favor (against). Since most firms have simple majority voting rules, the non-fundamental indeterminacy we point out seems important.

Activist and conservative equilibria are more likely to coexist for intermediate rather than for extreme values of \(\phi \). As discussed above, intermediate values of \(\phi \) correspond to cases when shareholders choose between policies that are in conflict, such as long-term and short-term investment policies, or socially more or less responsible strategies. Then the likelihood of proposal approval becomes critical for whether activists or conservatives value the firm more. By contrast, if \(\phi \) is very small (very large), then the activist shareholders value the firm more (less), regardless of the expected decision. Hence, the shareholder base does not shift toward the conservatives (activists), so the conservative (activist) equilibrium cannot exist, and multiplicity vanishes.

Finally, the heterogeneity among shareholders has to be sufficiently large, since only then are there enough shareholders with extreme views or preferences regarding the proposal who can give rise to both types of equilibria.

5 Welfare and prices

In this section we analyze the welfare and price effects of trading and voting. We start by deriving general properties that form the basis for our discussion. Then, in Section 5.1, we show that shareholder welfare and prices may move in opposite directions in response to changes in parameters, and in Section 5.2, we show that higher liquidity can be detrimental for both, prices and welfare.
The equilibrium share price is characterized by Proposition 3, which shows that the price depends on the identities of the marginal voter and the marginal trader, \(p_a = v(b_a, q_a) \) and \(p_c = v(b_c, q_c) \). The marginal voter determines the firm’s decision rule regarding the proposal, and the marginal trader’s valuation given this decision rule determines the market price.

We now derive the aggregate expected welfare of all shareholders (hereafter, expected welfare). In the activist equilibrium, whenever it exists, the expected welfare is

\[
W_a = e p_a \Pr [b < b_a] + \mathbb{E} [(e + x) v(b, q_a) - xp_a | b > b_a] \Pr [b > b_a].
\]

Similarly, in the conservative equilibrium, the expected welfare is

\[
W_c = e p_c \Pr [b > b_c] + \mathbb{E} [(e + x) v(b, q_c) - xp_c | b < b_c] \Pr [b < b_c].
\]

In both expressions, the first term captures the value of shareholders who sell their endowment \(e \) in equilibrium, whereas the second term is the expected value of shareholders who buy shares in equilibrium: it equals the value of their post-trade stake in the firm minus the price paid for the additional shares acquired through trading. To simplify the notation, we define

\[
\beta_a \equiv \mathbb{E} [b | b > b_a] \quad \text{and} \quad \beta_c \equiv \mathbb{E} [b | b < b_c],
\]

which denotes the average bias of the post-trade shareholder base for, respectively, the activist and the conservative equilibrium. The average bias of the post-trade shareholder base plays a critical role in the following welfare analysis. Indeed, while the share price is determined by the valuation of the \emph{marginal} trader, the next result shows that the expected welfare is determined by the valuation of the \emph{average} post-trade shareholder.

\textbf{Lemma 2.} In any equilibrium, the expected welfare of the pre-trade shareholder base is equal to the valuation of the average post-trade shareholder. In particular,

\[
W_a = e \cdot v(\beta_a, q_a) \quad \text{and} \quad W_c = e \cdot v(\beta_c, q_c).
\]

To understand Lemma 2, notice first that the expected welfare of the pre-trade shareholder base equals the expected welfare of the shareholder base post-trade, \(\mathbb{E} [v(b, q_a) | b > b_a] \) in the
activist equilibrium and \(\mathbb{E}[v(b, q_e) | b < b_c] \) in the conservative equilibrium. Intuitively, market clearing implies that all the gains of the shareholders who sell shares are offset by the losses of the shareholders who buy shares. Since selling shareholders sell their entire endowment, their valuations are fully captured by the transfers from buying shareholders. The linearity of \(v(b, q^*) \) in \(b \) in turn implies that the expected welfare of the shareholder base post-trade is equal to the valuation of the average post-trade shareholder.

Before deriving the main results of this section, we analyze the conditions under which the expected welfare and the share price are maximized. For this purpose, we consider the following thought experiment: Holding everything else equal, when does \(v(b, q^*) \) obtain its maximum as a function of the marginal voter’s bias \(-q^* \)? Expression (7) implies

\[
\frac{\partial v(b, q^*)}{\partial q^*} > 0 \iff -q^* > b. \tag{17}
\]

Therefore, the valuation \(v(b, q^*) \) of a shareholder with bias \(b \) is maximized if \(-q^* = b \), i.e., if the choice of the shareholder coincides with that of the marginal voter.

Since in the activist equilibrium \(p_a = v(b_a, q_a) \) and \(W_a = e \cdot v(\beta_a, q_a) \), and in the conservative equilibrium \(p_c = v(b_c, q_c) \) and \(W_c = e \cdot v(\beta_c, q_c) \), this insight gives the following result, which plays a central role in the analysis below.

Lemma 3.

(i) The share price obtains its maximum when the bias of the marginal voter equals the bias of the marginal trader (\(b_a \) in the activist equilibrium and \(b_c \) in the conservative equilibrium).

(ii) The expected welfare obtains its maximum when the bias of the marginal voter equals the bias of the average post-trade shareholder (\(\beta_a \) in the activist equilibrium and \(\beta_c \) in the conservative equilibrium).

By implication, the share price increases (decreases) if the marginal voter moves toward (away from) the position of the marginal trader. Similarly, welfare increases (decreases) if the marginal voter moves toward (away from) the position of the average post-trade shareholder. In the following subsections, we use these insights to explore the welfare and price effects.\(^{19}\)

\(^{19}\)In an empirical study of proxy contests, Listokin (2009) also observes the difference between the valuations of marginal traders, who set prices, and marginal voters, who determine voting outcomes, and concludes that marginal voters value management control more than marginal traders in his sample.
5.1 Opposing effects on welfare and prices

The literature in financial economics often draws a parallel between welfare and prices and uses stock returns to approximate effects on welfare. This parallel is natural if shareholders have homogeneous preferences. The next result highlights that if shareholders have heterogeneous preferences, shareholder welfare and prices may in fact move in opposite directions in response to exogenous changes to the firm’s governance structure or trading environment.

Proposition 5. Suppose the marginal voter is less extreme than the average post-trade shareholder (i.e., \(q_a < \beta_a \) in the activist equilibrium and \(-q_c > \beta_c \) in the conservative equilibrium), and consider a small exogenous change in parameters that affects the position of the marginal voter without affecting the marginal trader or the average post-trade shareholder. Then, if such a change in parameters increases (decreases) shareholder welfare, it also necessarily decreases (increases) the share price.

The intuition for Proposition 5 is best explained with the help of Figure 4, which focuses on the activist equilibrium.

![Figure 4 - Opposing effects on welfare and prices in the activist equilibrium](image)

Recall that, for any given decision rule \(q^* \), the share price equals the valuation of the marginal trader, \(p_a = v(b_a, q^*) \), which is maximized at \(-q^* = b_a\) by Lemma 3. Similarly, shareholder welfare is the valuation of the average post-trade shareholder, \(W_a = v(\beta_a, q_a) \), which is maximized at \(-q^* = \beta_a\), again by Lemma 3. Both functions are displayed in Figure 4. Since \(\beta_a > b_a \), the maximum of the welfare function always lies to the right of the maximum of the price function. Given the assumptions of the proposition, the bias of the marginal
voter, \(-q_a\), is located between that of the marginal trader and that of the average post-trade shareholder, i.e. \(b_a < -q_a < \beta_a\). However, in this interval, the welfare function is increasing in \(-q^*\), whereas the price function is decreasing in \(-q^*\). Intuitively, when \(-q^*\) increases, the distance of the marginal voter from the average post-trade shareholder decreases, whereas its distance from the marginal trader increases. Hence, any change that affects only the location of the marginal voter moves prices and welfare in opposite directions.

An exogenous change to the majority requirement \(\tau\) is an example of a parameter change in our setting that affects the marginal voter without affecting the position of the marginal trader or the average post-trade shareholder, as required by Proposition 5. Indeed, based on (10) and (11), an increase in \(\tau\) makes the marginal voter more conservative (i.e., \(-q_a\) and \(-q_c\) decrease) because it requires more conservative shareholders to vote for the proposal in order for it to be approved. At the same time, \(\tau\) has no effect on the marginal trader (\(b_a\) and \(b_c\)), and hence, on the average post-trade shareholder (\(\beta_a\) and \(\beta_c\)). The next corollary is then a direct consequence of Proposition 5.\(^{20}\)

Corollary 3. Suppose in equilibrium the marginal voter is less extreme than the average post-trade shareholder. Then, a small change in the majority requirement \(\tau\) that increases (decreases) shareholder welfare, necessarily decreases (increases) the share price.

The opposing welfare and price effects are not unique to changes in the majority requirement or, more generally, to parameters that only affect the identity of the marginal voter: any parameter shift that moves the marginal voter closer to the marginal trader but farther from the average post-trade shareholder will have opposing effects on welfare and prices. In Section 7.3, we analyze an extension of the baseline model with an additional round of trade post-voting, and show that the logic above also implies that price and welfare reactions to voting outcomes can have opposite signs.

Overall, Proposition 5 highlights a potential limitation to prices as a measure of shareholder welfare in the context of shareholder voting. By using prices as a proxy for welfare, the researcher may sometimes not only obtain a biased estimate of the real effect of the proposal, but even get the wrong sign of the effect.

\(^{20}\)Proposition 15 in the Online Appendix characterizes the majority requirement that maximizes the expected shareholder welfare. In general, the optimal majority requirement is not a simple majority and depends on liquidity.
5.2 Liquidity

Trade in our model enables shareholders with different views and preferences to exchange shares with each other in order to improve their welfare. In particular, more liquidity allows shareholders to build larger positions, so that the post-trade ownership structure becomes more concentrated among the most extreme shareholders. Therefore, when decisions on the proposal are not themselves affected by trade, e.g., when the decision is made by the board as in the no-vote benchmark of Section 4.2, the ability to trade always increases the share price and shareholder welfare:

Lemma 4. When the proposal is decided by a board with decision rule q^*, the share price and the expected welfare increase with liquidity δ.

By contrast, the next result demonstrates that when shareholders vote, then higher liquidity can in fact reduce the share price and expected welfare.

Proposition 6. Suppose the proposal is decided by a shareholder vote and $|q_{\text{NoTrade}}| < \Delta$. There exist δ_1 and δ_2, $0 < \delta_1 < \delta_2 < 1$, such that in any equilibrium:

(i) The share price increases in δ if $\delta > \delta_2$, and decreases in δ if $\delta < \delta_1$ and $|H(q_{\text{NoTrade}}) - \phi|$ is sufficiently small.

(ii) The expected welfare increases in δ if $\delta > \delta_2$, and decreases in δ if $\delta < \delta_1$, $|H(q_{\text{NoTrade}}) - \phi|$ is sufficiently small, and the marginal voter in this equilibrium is more extreme than the average post-trade shareholder.

First, consider the price effect in part (i). Recall that the share price reflects the valuation of the marginal trader. Since the marginal trader is always less extreme than the marginal voter, the decision rule is never optimal from his point of view. However, when liquidity δ is large, then a further increase in δ implies that both, the marginal trader and the marginal voter, converge to the most extreme shareholder, and since the wedge between them shrinks to zero, the share price necessarily increases in δ. This explains the cutoff $\bar{\delta}$.

In the opposite case, if δ is small and close to zero, the wedge between the marginal trader and the marginal voter can be large. For example, in the activist equilibrium, $\lim_{\delta \to 0} b_a = -\bar{b}$,
while \(\lim_{\delta \to 0} q_\alpha = q_{\text{NoTrade}} \). If \(|H(q^*) - \phi| \), which is the sensitivity of the shareholder’s valuation to his bias \(b \), is small, the marginal voter becomes more extreme at a faster rate than the marginal trader as \(\delta \) increases; as a result, the share price decreases as liquidity increases.\(^{21}\)

Since welfare is the valuation of the average post-trade shareholder, the intuition behind the effect of \(\delta \) on welfare in part (ii) is similar. The only exception is that the negative effect of liquidity on welfare also requires the average post-trade shareholder to be less extreme than the marginal voter—only in those circumstances can the wedge between the marginal voter and the average shareholder increase with \(\delta \).\(^{22}\)

Proposition 6 reveals a new force through which financial markets have real effects. In our setting, financial markets do not aggregate or transmit investors’ information to decision-makers. Instead, financial markets allow extreme shareholders to accumulate large positions in the firm and then use their votes to implement their preferred decisions. This effect can be detrimental to ex-ante shareholder value, both to those shareholders who buy shares and to those who sell their shares. Intuitively, if more trade makes the marginal voter too extreme, then even shareholders who buy shares are worse off if their bias is moderate. Since the willingness to pay of these shareholders decreases, the price at which shareholders can sell their shares decreases as well. Thus, both shareholders who sell their shares and the moderate shareholders who buy shares may be worse off if \(\delta \) is higher. Only the most extreme shareholders are always better off if liquidity increases.\(^{23}\)

6 Delegation

The previous analysis shows that shareholder voting generates an externality if shareholders can trade before they vote, with potentially negative implications for aggregate shareholder

\(^{21}\) The condition \(|q_{\text{NoTrade}}| < \Delta \) ensures that the marginal voter changes with \(\delta \) when \(\delta \) is small. Intuitively, this condition means that in the no-trade benchmark, the outcome of the vote is uncertain.

\(^{22}\) Since the marginal trader is always less extreme than the marginal voter, this additional condition is not needed in part (i). Note also that the conditions in Proposition 5, which are necessary to obtain opposing effects on welfare and prices, require the marginal voter to be less extreme than the average post-trade shareholder. Thus, these conditions are violated by the assumptions of Proposition 6 part (ii), which require the marginal voter to be more extreme.

\(^{23}\) Shareholders who are more extreme than the marginal voter (i.e., \(b < -q_c \) in the conservative equilibrium and \(b > -q_a \) in the activist equilibrium) benefit from a larger \(\delta \). This is because the marginal voter always becomes more extreme as \(\delta \) increases, and hence his preferences become more aligned with these extreme shareholders.
welfare. In Section 6.1, we ask whether shareholders would be better off if decision-making were instead delegated to the company’s board of directors. Thus, we return to the question we raised in the Introduction, i.e., whether shareholder democracy dominates board primacy for corporate decision-making. In Section 6.2, we ask whether the majority of shareholders would support the delegation of voting rights to the board if delegation is expected to improve aggregate shareholder welfare.

6.1 Optimal board

To study this question, we return to the game from Section 4.2 in which the decision is made unilaterally by a board of directors with bias b_m and decision rule $q^* = -b_m$, which reflects the incentives and preferences of board members. We are interested in the effect of b_m on shareholder welfare. For example, if $b_m = b_a$ ($b_m = b_c$), then the board’s objective is to maximize the value of the marginal trader in the activist (conservative) equilibrium, that is, to maximize the share price.

As shown in Proposition 2, the equilibrium is unique and either activist, if the board is biased toward the proposal, or conservative, if it is biased against the proposal. We refer to such boards as “activist” or “conservative,” respectively. Lemma 2 holds in this context as well, so the expected welfare of the initial shareholder base equals the expected welfare of the post-trade shareholder base, and is given by

$$W_{m,a} = e \cdot v(\beta_a, -b_m) \quad \text{and} \quad W_{m,c} = e \cdot v(\beta_c, -b_m)$$

if the board is activist and conservative, respectively. We call the board optimal if it maximizes the expected shareholder welfare. The next result characterizes the bias of the optimal board and compares it to the welfare outcome with shareholder voting.

Proposition 7.

(i) If $v(\beta_a, -\beta_a) > v(\beta_c, -\beta_c)$, then the optimal board is activist and $b_m^* = \beta_a$; otherwise, the optimal board is conservative and $b_m^* = \beta_a$.

(ii) The optimal board is always biased. If it is activist (conservative), then $b_m^* > \mathbb{E}[b]$ ($b_m^* < \mathbb{E}[b]$).
(iii) There always exists an $\varepsilon > 0$, such that if $|b_m - b_m^*| < \varepsilon$, the induced delegation equilibrium generates strictly higher expected welfare than any voting equilibrium, unless the voting equilibrium happens to be optimal already (i.e., either $-q_a = b_m^*$ or $-q_c = b_m^*$).

The main implication of Proposition 7 is that it is optimal to have a biased board. According to part (ii), the optimal board is always either more conservative or more activist relative to the initial shareholder base, i.e., $b_m^* \neq \mathbb{E}[b]$, even though it maximizes the welfare of the initial shareholder base. The intuition is similar to that of the welfare analysis in Section 5. Recall that the aggregate welfare of the initial shareholders equals the aggregate welfare of post-trade shareholders, which, in turn, is maximized by a biased board: From Lemma 3, the bias of the optimal board equals the average bias of post-trade shareholders (β_a or β_c). Our prior analysis also implies that the optimal board is tightly linked to the firm’s trading environment: as liquidity δ increases, the post-trade shareholder base becomes more extreme, so the optimal board becomes more biased. The optimal board is unbiased only if there is no trading between shareholders, i.e., $b_m^* \rightarrow \mathbb{E}[b]$ as $\delta \rightarrow 0$. Note also that since $\beta_a \neq b_a$ ($\beta_c \neq b_c$) and prices are determined by the valuation of the marginal trader, the objective of the optimal board should not be to maximize the share price. Overall, it is optimal to have a board that caters to the preferences of investors whose willingness to pay is higher than average.

In part (iii), we compare decision-making via shareholder voting, which results in decision rule q_a or q_c, to decision-making by the board. Note that a board with bias $b_m = -q_a$ ($b_m = -q_c$) implements the outcome of the activist (conservative) voting equilibrium. Thus, shareholders cannot be worse off with an optimally chosen board than with a shareholder vote. Moreover, shareholders are strictly better off with an optimal board except for the knife-edge cases in which the voting equilibrium already yields the highest expected welfare (i.e., if $q_a = -b_m^*$ or $q_c = -b_m^*$). In all other cases, the board does not have to be optimal, but just has to be good enough in the sense of being in the interval around b_m^* to increase welfare relative to decision-making via voting. Thus, the argument that whenever the board is biased, decisions should be delegated to shareholders, is not always correct if shareholder trading is taken into account. In the Online Appendix, we examine how the comparison between delegation to an optimal board and decision-making via shareholder voting depends on liquidity.
6.2 Voting to delegate to a board

Due to the heterogeneity of the shareholder base, even the optimal board, which maximizes the aggregate welfare of all shareholders, may nevertheless harm some of them. Those shareholders may prefer to retain their voting rights. This raises the question whether the majority of the initial shareholders would give up their right to vote and leave the choice to the board that improves aggregate welfare. In other words, can we expect shareholders to reach a consensus on delegation?

To answer this question, we analyze the following extension. Suppose that at the outset of the game, before the trading stage, shareholders choose between two alternatives: (i) all shareholders retain their voting rights, as in the baseline model; and (ii) shareholders delegate decision-making authority to a board with an exogenously given bias \(b_m \), which then decides on the proposal. Decision-making is delegated to the board if and only if a fraction of at least \(\tau \) of the shareholders support delegation.

In Proposition 8 in the Appendix we show that the optimal board, as characterized by Proposition 7, is not always in the set of boards that can garner support from at least \(\tau \) of the initial shareholders. The main reason behind this coordination failure are short-term trading considerations that distort shareholder votes on board delegation. To understand the intuition, consider the activist equilibrium and suppose that the marginal voter is more activist than the average post-trade shareholder (i.e., \(\beta_a < -q_a \)), that is, there are welfare gains from delegating decision rights to a board that is more conservative than the marginal voter. However, notice that in general, shareholders who expect to buy shares \(b > b_a \) would like to reduce the share price \(p_a \). Since the share price is given by the valuation of the marginal trader \(b_a \), shareholders with bias \(b > b_a \) have incentives to support boards that the marginal trader dislikes. This consideration amplifies their incentives to support activist boards. Essentially, buying shareholders support boards that are more activist than they are, since they internalize the negative effect that such boards will have on the value of the marginal trader, and thereby, on the price at which they buy. For that reason, even when there are more than \(\tau \) of the initial shareholders that are more conservative than the marginal voter, they cannot agree to delegate their voting rights to even a marginally more conservative board, and in particular, to the optimal board.
Overall, our analysis demonstrates that when voting occurs prior to trading, short-term trading considerations impose an externality and may push shareholders to make suboptimal delegation decisions in order to gain from trading.

7 Extensions and robustness

In this section we discuss several extensions of the model. The complete analysis of these extensions is in the Online Appendix, and we only summarize the key conclusions here.

7.1 Social concerns

Consider a variation of the model in which shareholders care about the proposal beyond its impact on the value of their shares. Shareholders may have such preferences if the proposal has environmental or social implications, which shareholders care about even after selling their entire endowment. Specifically, consider a shareholder with bias \(b \) who trades \(t \in [-e, x] \) shares and owns \(e + t \) shares after trading, and assume that his preferences are given by

\[
(e + t) [v_0 + (\theta + b) (d - \phi)] + \gamma bd.
\]

Parameter \(\gamma \geq 0 \) captures the weight the shareholder assigns to the proposal beyond his ownership in the firm, and in this respect it measures social concerns. The case \(\gamma = 0 \) is the baseline model. We fully develop this extension in Section A.1 in the Online Appendix.

Since shareholders do not expect their own vote to be pivotal for the voting outcome, social concerns do not affect their trading decisions. Hence, the marginal trader remains unchanged and, as a result, the marginal voter is unchanged as well. However, social concerns affect the preferences of the marginal voter because they amplify all shareholders' attitudes to the proposal. In particular, a shareholder who buys \(x \) shares votes for the proposal if and only if \(q > -b (1 + (\gamma/e) (1 - \delta)) \). Hence, conservative shareholders \((b < 0) \) become even more conservative in that they apply an even higher hurdle toward accepting the proposal, whereas activist shareholders \((b > 0) \) become even more activist. Despite this modification, the qualitative properties of the equilibria do not change.

The presence of shareholders' social concerns also affects the welfare functions \(W_a \) and \(W_c \),
which now represent the valuation of investors with attitudes $\beta_a + (\gamma/e) \mathbb{E}[b]$ and $\beta_c + (\gamma/e) \mathbb{E}[b]$, respectively. Intuitively, with social concerns, shareholders are affected by the proposal even if they sell their shares, and hence the welfare function must put some weight on $\mathbb{E}[b]$, the average bias of the initial, pre-trade, shareholder base. However, and for the same reasons as in the baseline model, we still obtain opposing effects on welfare and prices for certain parameter ranges, the optimal board is still biased, and shareholders may still not wish to delegate decision-making to the optimal board (see Propositions 5, 7, and 8 above).

7.2 Heterogeneous endowments and trading frictions

We also extend the baseline model by allowing shareholders to differ with respect to their endowments and their ability to buy shares (see Section A.2 of the Online Appendix for the complete analysis). Specifically, we assume that a shareholder with bias b has an endowment $e(b) > 0$ and can buy up to $x(b) > 0$ shares. We do not restrict the correlations between $x(b)$, $e(b)$, and b in any way. For example, endowments and trading opportunities could be higher for activist shareholders, for conservative shareholders, or for extremist (high-$|b|$) shareholders. We denote the total endowment by $e \equiv \int_{-\infty}^{\infty} e(b) \, dG(g)$.

The trading equilibrium is very similar to the baseline case, i.e., there is an activist and a conservative equilibrium. Consider the activist equilibrium. The marginal trader b_a, who is indifferent between buying and selling, is determined by market clearing, i.e., by the unique solution of $\int_{b_a}^{b} x(b) \, dG(b) = \int_{-\infty}^{b_a} e(b) \, dG(b)$. All shareholders with a bias higher (lower) than that of the marginal trader buy (sell), so post-trading, a shareholder with bias $b > b_a$ holds $x(b) + e(b)$ shares. Thus, we define a new density function and cdf for the distribution of post-trade shareholders as

$$g_a(b) \equiv g(b) \frac{x(b) + e(b)}{e}, \quad G_a(b) \equiv \int_{b_a}^{b} g_a(b) \, db, \quad (20)$$

which allows us to apply the arguments of the baseline model to this extension. In particular, the marginal voter is given by $-q_a = G_a^{-1}(1 - \tau)$ and is more extreme than the marginal trader, i.e., $-q_a > b_a$. The welfare functions have the same characteristics and reflect the welfare of the post-trade shareholders (as in Lemma 2), so our results on the opposing effects on welfare and prices (Proposition 5) and the optimal board (Propositions 7 and 8) continue to hold.
7.3 Trading after voting

The baseline model features one round of trading prior to the vote. In a further extension, we introduce a second round of trading after the vote, but before state θ is realized. The purpose of this extension is to explicitly analyze the reactions of the share price and welfare to the voting outcome. In addition, this analysis demonstrates the robustness of our main insights to a dynamic trading environment. For simplicity, in this discussion, we focus on the case $\phi = 0$, when the equilibrium is activist. The complete analysis of this case and the discussion of cases with $\phi \neq 0$ are in Section A.3 of the Online Appendix.

The pre-vote trading stage is similar to that in the baseline model: conservative shareholders with $b < b_a$ sell to activist shareholders, so the shareholder base at the voting stage consists of shareholders with $b > b_a$, where b_a is given by (8). However, additional trading now takes place after the vote: If the proposal is accepted, the more moderate shareholders among those with $b > b_a$ sell to the more activist shareholders. The anticipation of this post-vote trading implies that the pre-vote share price is the expected post-vote price, i.e., the expected valuation of the post-vote marginal trader. Therefore, the price reaction to proposal approval is positive if and only if proposal approval benefits the post-vote marginal trader.

We next show that the average price and welfare reactions to proposal approval can have opposite signs. The intuition is similar to the intuition for opposing price and welfare effects in Section 5.1. If the marginal voter has more activist (i.e., more extreme) preferences than the post-vote marginal trader, then on average, this marginal trader’s valuation and hence the share price react negatively to proposal approval. In contrast, shareholder welfare can on average react positively to proposal approval if the marginal voter is less activist (i.e., less extreme) than the average shareholder after the post-vote trading stage. Overall, this extension further supports our conclusion in Section 5.1 that price reactions may be an imperfect proxy for welfare effects of shareholder votes.

7.4 Trading with partial sales of endowments

The baseline model treats sales and purchases of shares asymmetrically by assuming that shareholders can buy only a limited number x of shares, but can always sell their entire endowment. In Section A.4 of the Online Appendix, we introduce partial sales of endowments by assuming
that shareholders cannot sell more than \(y \in (0, e) \) shares. The baseline model corresponds to \(y = e \), and the no-trade benchmark corresponds to \(y = 0 \). The resulting equilibrium is similar to that in the baseline model with the marginal traders now given by \(b_a = G^{-1}(\delta(y)) \) and \(b_c = G^{-1}(1 - \delta(y)) \), where \(\delta(y) \equiv \frac{x}{y+x} \) is the analog of \(\delta \) in equation (2). The voting equilibrium with partial sales of endowments differs from the baseline case in two respects. First, the marginal voter can now be less extreme than the marginal trader if \(y \) is sufficiently close to zero. Intuitively, when \(y \) is very small, the supply of shares is very low, and only the most extreme shareholders with the highest willingness to pay will buy shares in equilibrium. That is, the marginal trader is extreme. At the same time, the post-trade shareholder base is very similar to the initial shareholder base because the volume of trade is low, and thus the marginal voter is relatively moderate. Second, the welfare function now becomes a weighted average of the welfare of the selling shareholders and that of the buying shareholders, where the weight of the selling shareholders is always smaller than that of the buying shareholders and decreases in \(y \). Despite these differences, our main results about the price and welfare implications and delegation to the board continue to hold.

8 Conclusion

In this paper we study the relationship between trading and voting in a model in which shareholders have identical information but heterogeneous preferences. They trade with each other, and those who end up owning the shares vote on a proposal. One of our conclusions is that the complementarity between trading and voting gives rise to multiple equilibria. Multiple equilibria arise with self-fulfilling expectations, in our case about the likelihood that the proposal is accepted: If shareholders expect a high likelihood that the proposal is accepted, then the activist equilibrium obtains, and vice versa for a low likelihood. This leaves us with the question of how shareholders coordinate on a particular equilibrium. One way of addressing this issue is to root expectation formation in the economic environment.\(^{24}\) In our context there are

\(^{24}\)This is ultimately the reasoning behind the notion of a focal point (Schelling, 1960), which rests on the argument that economic agents rely on additional reasoning to coordinate on a particular equilibrium. See Sugden and Zamarron (2006) and Myerson (2009) for positive evaluations of this “pragmatic” approach to equilibrium selection, and Morris and Shin (2003) for a more critical stance on leaving expectation formation outside the model.
multiple potential sources in the economic environment that may influence expectation formation. For example, some shareholders may be more visible, have better access to the media, or have other characteristics not included in our model that put them into a position to influence the expectations of other shareholders. Proxy advisory firms may perform a similar function and may have an influence on voting outcomes by coordinating shareholders’ expectations. We hope that the future empirical literature will study how shareholders form expectations about governance outcomes, how these expectations affect trading before shareholder votes, and how these changes in the shareholder base affect voting outcomes.

The second important conclusion is that shareholder voting may not lead to optimal outcomes. First, there is no guarantee that shareholders coordinate on the welfare-maximizing equilibrium if there are multiple equilibria. Second, we show that delegation to a board of directors can improve shareholder welfare even if shareholders can coordinate on the welfare-maximizing voting equilibrium. Third, the welfare of current shareholders is not maximized with a board that best represents their preferences. Rather, it is maximized by a board that represents the interests of those shareholders who own the firm after trading, and thus the optimal board needs to be biased. Hence, observing that the board pursues interests different from those of the average shareholder is not sufficient for making a case for “shareholder democracy.” Such a divergence can indeed be optimal. The parallelism to political democracy breaks down in one important respect: Shareholders can trade, and trading aligns the shareholder base with the expected outcomes.²⁵

The model in this paper relies on heterogeneous preferences. However, the model could be easily modified to accommodate homogeneous preferences if we assume that shareholders have differences of opinions. For example, in such a model, all shareholders may have the same bias but different interpretations of the public signal about the value of the proposal.²⁶ The characterization of the equilibrium would remain similar, but the welfare analysis would require some adjustments, since models with differences of opinions lack objectively correct probability distributions. Exploring such an extension is left for future research.

²⁵Easterbrook and Fischel (1983) already pointed out this important difference when they argued that the ability to sell shares serves the same purpose as voting in a polity, which is designed to “elicit the views of the governed and to limit powerful states.” (p. 396). The issue is still debated vigorously in the law literature, see Bebchuk (2005) and Bainbridge (2006).
²⁶Some papers have explored differences of opinions in relation to corporate governance theoretically (Boot, Gopalan, and Thakor, 2006; Kakhbod et al., 2019) and empirically (Li, Maug, and Schwartz-Ziv, 2019).
References

Appendix - Proofs

This appendix presents the proofs of all results in the paper. Throughout the appendix, the cutoff \(q^* \) can potentially fall out of the support of the distribution of \(q \), \([-\Delta, \Delta]\). In this case, if \(q^* \geq \Delta \), we set \(H(q^*) = 0 \), \(H(q^*) \Pr[\theta|q > q^*] = 0 \), and \(f(q^*) = 0 \). Similarly, if \(q^* \leq -\Delta \), we set \(H(q^*) = 1 \), \(H(q^*) \Pr[\theta|q > q^*] = \Pr[\theta] = 0 \), and \(f(q^*) = 0 \).

Proof of Lemma 1. Given the realization of \(q \), a shareholder indexed by \(b \) votes his shares for the proposal if and only if \(q > b \). Denote the fraction of post-trade shares voted to approve the proposal by \(\Lambda(q) \). Note that \(\Lambda(q) \) is weakly increasing (everyone who votes “for” given a smaller \(q \) will also vote “for” given a larger \(q \), and there might be a non-negative mass of new shareholders who start voting “for”). If, for the lowest possible \(q = -\Delta \), we have \(\Lambda(-\Delta) > \tau \), then \(q^* \) in the statement of the lemma is equal to \(-1\) (because the proposal is always approved). Similarly, if for the highest possible \(q = \Delta \), we have \(\Lambda(\Delta) \leq \tau \), then \(q^* \) in the statement of the lemma is equal to \(\Delta \) (because the proposal is never approved). Finally, if \(\Lambda(-\Delta) \leq \tau < \Lambda(\Delta) \), there exists \(q^* \in [-\Delta, \Delta] \) such that the fraction of votes voted in favor of the proposal is greater than \(\tau \) if and only if \(q > q^* \). Hence, the proposal is approved if and only if \(q > q^* \). ■

Proof of Proposition 2. We consider three cases. First, suppose \(H(q^*) > \phi \). In this case, \(v(b, q^*) \) increases in \(b \), and a shareholder with bias \(b \) buys \(x \) shares if

\[
v(b, q^*) > p \iff b > b_a \equiv \frac{p - v_\theta - H(q^*) \Pr[\theta|q > q^*]}{H(q^*) - \phi},
\]

and sells \(e \) shares if \(v(b, q^*) < p \). Therefore, the total demand for shares is \(D(p) = x \Pr[b > b_a] \) and the total supply of shares is \(S(p) = e \Pr[b < b_a] \). The market clears if and only if \(D(p) = S(p) \iff \Pr[b < b_a] = \frac{x}{x + e} = \delta \iff b_a = G^{-1}(\delta) \).

Since \(\delta \in (0, 1) \), we have \(b_a \in (b, \overline{b}) \). The price that clears the market is the valuation of the marginal trader \(b_a \), and therefore, \(p = v(b_a, q^*) \), as required.

Second, suppose \(H(q^*) < \phi \). In this case, \(v(b, q^*) \) decreases in \(b \), and a shareholder with bias \(b \) buys \(x \) shares if

\[
v(b, q^*) > p \iff b < b_c \equiv \frac{p - v_\theta - H(q^*) \Pr[\theta|q > q^*]}{H(q^*) - \phi},
\]

and sells \(e \) shares if \(v(b, q^*) < p \). Therefore, the total demand for shares is \(D(p) = x \Pr[b < b_c] \) and the total supply of shares is \(S(p) = e \Pr[b > b_c] \). The market clears if and only if \(D(p) = S(p) \iff \Pr[b < b_c] = \frac{e}{x + e} = 1 - \delta \iff b_c = G^{-1}(1 - \delta) \).

Since \(\delta \in (0, 1) \), we have \(b_c \in (\overline{b}, 1) \). The price that clears the market is the valuation of the
marginal trader b_c, and therefore, $p = v(b_c, q^*)$, as required.

Finally, suppose $H(q^*) = \phi$. In this case, the expected value of each shareholder is

$$v(b, q^*) = v_0 + H(q^*) \mathbb{E} [\theta | q > q^*] = v_0 + \phi \mathbb{E} [\theta | q > q^*].$$

The market can clear only if $p = v_0 + \phi \mathbb{E} [\theta | q > q^*]$, since otherwise, either all shareholders would want to buy shares or all shareholders would want to sell their shares. Notice that shareholder value does not depend on b, and that market clearing implies that all shareholders are indifferent between buying and selling shares. Based on the tie-breaking rule we adopt, shareholders will not trade. ■

Proof of Proposition 3. According to Lemma 1, any equilibrium is characterized by some cutoff q^* at the voting stage. We consider three cases.

First, suppose that $H(q^*) > \phi$ (activist equilibrium). The arguments in the proof of Proposition 2 can again be repeated word for word. In particular, the marginal trader is b_a as given by (8), and after the trading stage, the shareholder base consists entirely of shareholders with $b > b_a$. Consider a realization of q. If $q > -b_a$, the proposal is accepted ($b > b_a > -q$ for all shareholders of the firm). If $q < -b_a$, then shareholders who vote in favor are those with $b \in (-q, b]$ out of $b \in (b_a, b]$, which gives a fraction of $\Pr[-q < b | b_a < b]$ affirmative votes. Hence, the proposal is accepted if and only if either (1) $q > -b_a$ or (2) $q < -b_a$ and $\Pr[-q < b | b_a < b] > \tau$, where the condition in (1) is equivalent to $q > -G^{-1}(\delta)$, and the conditions in (2) are together equivalent to

$$\Pr[-q < b | b_a < b, q < -b_a] > \tau \Leftrightarrow 1 - G(-q) > \tau \left(1 - G(b_a) \right) = \tau \left(1 - \delta \right) \Leftrightarrow q > -G^{-1}(1 - \tau (1 - \delta)).$$

Hence, the proposal is accepted if and only if $q > q_a = \min\{-G^{-1}(\delta), -G^{-1}(1 - \tau (1 - \delta))\}$, and since $\delta < 1 - \tau (1 - \delta)$, the cutoff in this “activist” equilibrium is q_a as given by (10). Similarly to the proof of Proposition 2, the share price is $p_a = v(b_a, q_a)$.

Second, suppose that $H(q^*) < \phi$ (conservative equilibrium). The arguments in the proof of Proposition 2 can again be repeated here. In particular, the marginal trader is b_c as given by (9), and after the trading stage, the shareholder base consists entirely of shareholders with $b < b_c$. Consider a realization of q. Recall that shareholder b votes for the proposal if and only if $q > -b$. Hence, if $q < -b_c$, all shareholders of the firm vote against ($b < b_c < -q$), so the proposal is rejected. If $q > -b_c$, then shareholders who vote in favor are those with $b \in (-q, b_c)$ out of $b \in [-b, b_c]$, which gives a fraction of $\Pr[-q < b | b_c < b]$ affirmative votes. Hence, the proposal is accepted if and only if $q < b_c$ and $\tau < \Pr[-q < b | b_c < b]$, which are together equivalent to

$$\tau < \frac{\Pr[b < b_c] - \Pr[b < -q]}{\Pr[b < b_c]} \Leftrightarrow \Pr[b < -q] < (1 - \tau) \Pr[b < b_c] \Leftrightarrow G(-q) < (1 - \tau) (1 - \delta) \Leftrightarrow q > -G^{-1}((1 - \tau) (1 - \delta)).$$

Hence, the cutoff in this “conservative” equilibrium is q_c, given by (11). Similarly to the proof
of Proposition 2, the share price is \(p_c = v(b_c, q_c) \).

Third, suppose \(H(q^*) = \phi \). In this case, the value of each shareholder is

\[
v(b, q^*) = v_0 + H(q^*) \mathbb{E}[\theta|q > q^*] = v_0 + \phi \mathbb{E}[\theta|q > q^*].
\]

Therefore, the market can clear only if \(p = v_0 + \phi \mathbb{E}[\theta|q > q^*] \). Notice that shareholder value does not depend on \(b \), and that market clearing implies that all shareholders are indifferent between buying and selling shares. Based on the tie-breaking rule we adopt, shareholders will not trade. Therefore, the post-trade shareholder base is identical to the pre-trade shareholder base. Next, note that \(H(q^*) = \phi \) implies that the proposal is accepted if and only if \(q > F^{-1}(1 - \phi) \). Since a shareholder votes for the proposal if and only if \(q > -b \), it must be that the fraction of initial shareholders with \(F^{-1}(1 - \phi) > -b \) is exactly \(\tau \), which is equivalent to \(1 - G(-F^{-1}(1 - \phi)) = \tau \), or \(G^{-1}(1 - \tau) = -F^{-1}(1 - \phi) \). This is a knife-edge case that we ignore, since it does not hold generically.

Finally, notice that \(q_a < q_c \), and therefore, either \(H(q_c) < \phi \), or \(H(q_a) > \phi \), or both. Therefore, an equilibrium always exists (but may be non-unique if \(H(q_c) < \phi < H(q_a) \)). This completes the proof.

As a side note, notice also that many other tie-breaking rules, those in which all shareholders follow the same strategy upon indifference (e.g., buy \(r \in [-e, e] \) shares), would also eliminate this type of equilibrium. Indeed, if all shareholders buy or sell a certain (the same across shareholders) amount of shares upon indifference, the market is unlikely to clear. For the market to clear, shareholders with different biases would need to behave differently when they are indifferent between buying and selling shares, that is, the tie-breaking rule has to differ across shareholders in a particular way. Since such a tie-breaking rule is somewhat arbitrary, we ruled it out as an unlikely outcome.

Proof of Proposition 4. Note that condition (12) can be written as

\[
(1 - \delta)(1 - \tau) < G(-F^{-1}(1 - \phi)) < 1 - \tau (1 - \delta).
\]

To see the point about \(\delta \), note that (21) is equivalent to

\[
\delta > \max \left\{ 1 - \frac{G(-F^{-1}(1 - \phi))}{1 - \tau}, 1 - \frac{1 - G(-F^{-1}(1 - \phi))}{\tau} \right\}.
\]

To see the point about \(\tau \), note that (21) is equivalent to

\[
1 - \frac{G(-F^{-1}(1 - \phi))}{1 - \delta} < \tau < \frac{1 - G(-F^{-1}(1 - \phi))}{1 - \delta}.
\]

To see the point about \(\phi \), note that (21) is equivalent to

\[
1 - F\left(-G^{-1}\left((1 - \delta)(1 - \tau)\right)\right) < \phi < 1 - F\left(-G^{-1}\left(1 - \tau (1 - \delta)\right)\right).
\]

Finally, notice that as \(b \to 0 \), the bias of the post-trade shareholder base becomes homogeneous.
at zero, and in particular, the marginal voter must converge to zero as well. This implies
\(\lim_{q \to 0} q^* = 0 \) in any equilibrium, and thus, the voting equilibrium must be unique: it is an activist equilibrium if and only if \(H(0) < \phi \). Therefore, condition (12) can be satisfied only if \(b \) is sufficiently large, as required.

Proof of Lemma 4. Recall that in the activist equilibrium, market clearing implies
\[\Pr [b < a] e = \Pr [b > a] x, \text{ where } \Pr [b > a] = 1 - \frac{c}{x+e}. \]
Therefore,
\[
W_a = \Pr [b < a] e p_a + \Pr [b > a] E[(e + x) v(b, q_a) - xp_a | b > a] \\
= \Pr [b > a] x p_a + \Pr [b > a] E[(e + x) v(b, q_a) - xp_a | b > a] \\
= \Pr [b > a] \mathbb{E}[(e + x) v(b, q_a) | b > a] = (1 - \delta) (e + x) \mathbb{E} [v(b, q_a) | b > a] \\
= e \mathbb{E} [v(b, q_a) | b > a] = ev(E[b > a], q_a) = ev(\beta_a, q_a),
\]
where the second to last equality follows from the linearity of \(v(b, q_a) \) in \(b \). The proof for the conservative equilibrium is similar and for brevity, is presented in Section B.3 of the Online Appendix.

Proof of Proposition 5. First, consider the activist equilibrium. Recall that in this equilibrium \(W_a = e \cdot v(\beta_a, q_a) \) and \(p_a = v(b_a, q_a) \). Then, a change in parameters that affects the marginal voter \((q_a) \) without changing the marginal trader only affects \(W_a \) and \(p_a \) through its effect on \(q_a \). Also recall that based on (17), \(v(\beta_a, q^*) \) is a hump-shaped function in \(q^* \) with a maximum at \(q^* = -\beta_a \), and \(v(b_a, q^*) \) is a hump-shaped function in \(q^* \) with a maximum at \(q^* = -b_a \). Since \(-b_a < q_a - \beta_a \) by assumption of the proposition, any small enough change in parameters that leaves this order unchanged \((-b_a < q_a - \beta_a) \) either increases the distance to \(-\beta_a \) but decreases the distance to \(-(b_a\), or vice versa. Hence, this change of parameters necessarily moves prices and welfare in opposite directions. The proof for the conservative equilibrium is similar and for brevity, is presented in Section B.3 of the Online Appendix.

Proof of Lemma 4. Based on Proposition 2, the share price is
\[p_{\text{NoVote}}(q^*) = v_0 + H(q^*) \mathbb{E}[q | q > q^*] + \begin{cases}
 b_c (H(q^*) - \phi) & \text{if } H(q^*) < \phi \\
 b_a (H(q^*) - \phi) & \text{if } H(q^*) > \phi,
\end{cases} \]
and the expected shareholder welfare is
\[W_{\text{NoVote}}(q^*) = e \cdot \left[v_0 + H(q^*) \mathbb{E}[q | q > q^*] + \begin{cases}
 b_c (H(q^*) - \phi) & \text{if } H(q^*) < \phi \\
 b_a (H(q^*) - \phi) & \text{if } H(q^*) > \phi,
\end{cases} \right] \]
Recall that \(b_c = G^{-1}(1 - \delta), \beta_c = \mathbb{E}[b | b < b_c], b_a = G^{-1}(\delta), \text{ and } \beta_a = \mathbb{E}[b | b > b_a]. \) Thus, \(p_{\text{NoVote}}(q^*) \) and \(W_{\text{NoVote}}(q^*) \) depend on \(\delta \) only through their effect on \(b_c \) and \(b_a \). Since, by Corollary 1, \(b_c \) and \(\beta_c \) are decreasing in \(\delta \), and \(b_a \) and \(\beta_a \) are increasing in \(\delta \), both \(p_{\text{NoVote}}(q^*) \) and \(W_{\text{NoVote}}(q^*) \) increase in \(\delta \).
Proof of Proposition 6. First, consider the activist equilibrium, which exists if and only if $H(q_a) - \phi > 0$. Recall that $p_a = v(b_a, q_a)$ and $W_a = e \cdot v(b_a, q_a)$, where $b_a = G^{-1}(\delta)$, and $q_a = E[b | b > b_a] = \frac{1}{G(1 - b_a)} \int_{b_a}^{b} b dG(b)$, and $q_a = -G^{-1}(1 - \tau(1 - \delta))$. Using (7),

$$\frac{\partial p_a}{\partial \delta} = \frac{\partial b_a}{\partial \delta} (H(q_a) - \phi) - (b_a + q_a) \frac{\partial q_a}{\partial \delta} f(q_a)$$

(22)

and

$$\frac{1}{e} \frac{\partial W_a}{\partial \delta} = \frac{\partial \beta_a}{\partial \delta} (H(q_a) - \phi) - (\beta_a + q_a) \frac{\partial q_a}{\partial \delta} f(q_a).$$

(23)

More precisely, (22)-(23) hold when $q_a \in (-\Delta, \Delta)$, and when q_a is outside these bounds, the second term in both of these expressions is equal to zero (as noted above, we set $f(q^*) = 0$ for $q^* \notin (-\Delta, \Delta)$).

Using (10) and (8), we get $\frac{\partial b_a}{\partial \delta} = -\frac{\tau}{g(-q_a)} < 0$, $\frac{\partial b_a}{\partial \delta} = \frac{1}{g(b_a)} > 0$, and

$$\frac{\partial \beta_a}{\partial \delta} = \frac{-\partial b_a g(b_a) \left[1 - G(b_a)\right] + \left[\int_{b_a}^{b} b g(b) \, db\right] g(b_a) \frac{\partial b_a}{\partial \delta}}{\left[1 - G(b_a)\right]^2}$$

$$= \frac{\partial b_a}{\partial \delta} \frac{g(b_a)}{1 - G(b_a)} (\beta_a - b_a) = \frac{\beta_a - b_a}{1 - G(b_a)} > 0.$$

Plugging into (22) and (23), we get

$$\frac{\partial p_a}{\partial \delta} = \frac{H(q_a) - \phi}{g(b_a)} + \tau (b_a + q_a) \frac{f(q_a)}{g(-q_a)},$$

$$\frac{1}{e} \frac{\partial W_a}{\partial \delta} = \frac{H(q_a) - \phi}{1 - G(b_a)} (\beta_a - b_a) + \tau (\beta_a + q_a) \frac{f(q_a)}{g(-q_a)},$$

where again, the second term is zero if $q_a \notin (-\Delta, \Delta)$. Notice that as $\delta \to 1$, then b_a, β_a, and $-q_a$ all converge to \bar{b}, and $H(q_a) - \phi \to H(-\bar{b}) - \phi$. Suppose the activist equilibrium exists in the limit (which is the case if $H(\bar{b}) > \phi$). Since g is positive on $[\bar{b}, b]$, $\lim_{\delta \to 1} \frac{\partial p_a}{\partial \delta} = \frac{H(\bar{b}) - \phi}{g(b)} > 0$.

In addition, $\lim_{\delta \to 1} \frac{1}{e} \frac{\partial W_a}{\partial \delta} = \left(H(-\bar{b}) - \phi\right) \lim_{\delta \to 1} \frac{\beta_a - b_a}{1 - G(b_a)}$. Using l'Hopital's rule,

$$\lim_{\delta \to 1} \frac{\beta_a - b_a}{1 - G(b_a)} = \lim_{\delta \to 1} \frac{\frac{\partial \beta_a}{\partial \delta} - \frac{\partial b_a}{\partial \delta}}{-g(b_a) \frac{\partial b_a}{\partial \delta}} = \frac{1}{g(\bar{b})} \lim_{\delta \to 1} \frac{\beta_a - b_a}{1 - G(b_a)}$$

which implies $\lim_{\delta \to 1} \frac{\beta_a - b_a}{1 - G(b_a)} = \frac{1}{2} \frac{1}{g(b)} > 0$. Therefore, $\lim_{\delta \to 1} \frac{\partial W_a}{\partial \delta} > 0$.

Also notice that as $\delta \to 0$, then $b_a \to -\bar{b}$, $\beta_a \to E[b]$, and $q_a \to q_{\text{NoTrade}} = -G^{-1}(1 - \tau(1 - \bar{b})).$ Suppose the activist equilibrium exists in this limit (which is the case if $H(q_{\text{NoTrade}}) > \phi$). Then

$$\lim_{\delta \to 0} \frac{\partial p_a}{\partial \delta} = \frac{H(q_{\text{NoTrade}}) - \phi}{g(-\bar{b})} + \tau (-\bar{b} + q_{\text{NoTrade}}) \frac{f(q_{\text{NoTrade}})}{g(-q_{\text{NoTrade}})},$$

46
where the second term is strictly negative because (1) by assumption, \(q_{\text{NoTrade}} \in (-\Delta, \Delta) \), and (2) \(-\overline{b} + q_{\text{NoTrade}} < 0\), as shown above. Hence, \(\lim_{\delta \to 0} \frac{\partial W_b}{\partial \delta} < 0 \) if \(|H(q_{\text{NoTrade}}) - \phi| \) is sufficiently small. Also notice that
\[
\lim_{\delta \to 0} \frac{1}{\delta} \frac{\partial W_b}{\partial \delta} = (H(q_{\text{NoTrade}}) - \phi) \left(\mathbb{E}[\overline{b}] + \overline{b} \right) + \tau \left(\mathbb{E}[\overline{b}] + q_{\text{NoTrade}} \right) \frac{f(q_{\text{NoTrade}})}{g(-q_{\text{NoTrade}})}.
\]
Thus, if \(\lim_{\delta \to 0} (\overline{\beta} + q_a) = \mathbb{E}[\overline{b}] + q_{\text{NoTrade}} < 0 \) (i.e., the marginal voter is more extreme than the average post-trade shareholder) and \(|H(q_{\text{NoTrade}}) - \phi| \) is small enough, then \(\lim_{\delta \to 0} \frac{\partial W_b}{\partial \delta} < 0 \).

The analysis for the conservative equilibrium is similar and for brevity, is presented in Section B.3 of the Online Appendix. It shows that (1) \(\lim_{\delta \to 1} \frac{\partial W_c}{\partial \delta} > 0 \) and (2) if \(\lim_{\delta \to 0} (\beta_c + q_c) = \mathbb{E}[\overline{b}] + q_{\text{NoTrade}} > 0 \) (i.e., the marginal voter is more extreme than the average post-trade shareholder) and \(|H(q_{\text{NoTrade}}) - \phi| \) is small enough, then \(\lim_{\delta \to 0} \frac{\partial W_c}{\partial \delta} < 0 \).

Given the strictly positive (negative) limits of \(\frac{\partial \nu}{\partial \delta} \) and \(\frac{\partial \nu}{\partial \delta} \) as \(\delta \to 1 \) (\(\delta \to 0 \)) for any equilibrium as long as it exists, it follows that under the conditions of the proposition, there exist \(\delta \) and \(\overline{\delta} \), \(0 < \delta < \overline{\delta} < 1 \), such that both the share price and welfare in any equilibrium that exists increase (decrease) in \(\delta \) for \(\delta > \overline{\delta} \) (\(\delta < \delta \)), as required. \(\blacksquare \)

Proof of Proposition 7. We start by noting that if \(q^* = H^{-1}(\phi) \), then all shareholders are indifferent between buying and selling, and the tie-breaking rule we adopt implies that in equilibrium, no shareholder trades. While this tie-breaking rule implies that the trading strategies of shareholders in the delegation equilibrium are not continuous in \(q^* \) as \(q^* \to H^{-1}(\phi) \), the expected welfare of shareholders in any equilibrium continuously converges to welfare in the equilibrium with \(q^* = H^{-1}(\phi) \). Indeed, shareholder welfare in the equilibrium in which \(q^* = H^{-1}(\phi) \) and shareholders thus do not trade is
\[
e \cdot \mathbb{E}[v(b, H^{-1}(\phi))] = e \cdot v(\mathbb{E}[b], H^{-1}(\phi)) = e \cdot (v_0 + \phi \mathbb{E}[\theta|q > H^{-1}(\phi)]).
\]
Using (16) and (7), it is easy to see that the limit of shareholder welfare in both the conservative equilibrium \((e \cdot \lim_{q^* \to H^{-1}(\phi)} v(\beta, q^*)) \) and in the activist equilibrium \((e \cdot \lim_{q^* \to H^{-1}(\phi)} v(\beta, q^*)) \) is the same and equals (24), as required.

Proof of (i). We first show that \(b^*_m = \beta_a \) if \(v(\beta_a, -\beta_a) > v(\beta_c, -\beta_c) \), and \(b^*_m = \beta_c \) otherwise. The choice of the optimal board is equivalent to choosing the cutoff \(q^* \) that maximizes expected shareholder welfare. Recall from Section 5 and (17) that \(v(b, q^*) \) is a hump-shaped function in \(q^* \) with a maximum at \(q^* = -b \). Thus, within the range of \(q^* \) that generates a conservative equilibrium or the equilibrium where shareholders are indifferent and do not trade \((H(q^*) \leq \phi \iff q^* \geq H^{-1}(\phi)) \), (16) implies that the optimal cutoff \(q^* \) is the point closest to \(-\beta_c \) in this range, i.e., \(\max \{-\beta_c, H^{-1}(\phi)\} \). Similarly, within the range of \(q^* \) that generates an activist equilibrium or the equilibrium where shareholders are indifferent and do not trade \((H(q^*) \geq \phi \iff q^* \leq H^{-1}(\phi)) \), the optimal cutoff \(q^* \) is the point closest to \(-\beta_a \) in this range, i.e., \(\min \{-\beta_a, H^{-1}(\phi)\} \). Since \(\beta_c < \beta_a \), there are three cases to consider:

Case 1: If \(H^{-1}(\phi) \leq -\beta_a \), then any \(q^* < H^{-1}(\phi) \) generates an activist equilibrium, and it is welfare inferior to the equilibrium with \(q^* = H^{-1}(\phi) \). At the same time, setting \(q^* = -\beta_c \) would generate a conservative equilibrium that is superior to an equilibrium with \(q^* = H^{-1}(\phi) \).
because \(-\beta_c > -\beta_a \geq H^{-1}(\phi)\). Therefore, in this case \(b_m^* = \beta_c\).

Case 2: If \(-\beta_c \leq H^{-1}(\phi)\), then any \(q^* > H^{-1}(\phi)\) generates a conservative equilibrium, and it is welfare inferior to an equilibrium with \(q^* = H^{-1}(\phi)\). At the same time, setting \(q^* = -\beta_a\) would generate an activist equilibrium that is superior to an equilibrium with \(q^* = H^{-1}(\phi)\) because \(-\beta_a < -\beta_c \leq H^{-1}(\phi)\). Therefore, in this case \(b_m^* = \beta_a\).

Case 3: If \(-\beta_a < H^{-1}(\phi) < -\beta_c\), then the optimal cutoff among those that generate a conservative equilibrium is \(-\beta_c\), and the optimal cutoff among those that generate an activist equilibrium is \(-\beta_a\), and both generate higher welfare than \(q^* = H^{-1}(\phi)\). Then, \(b_m^* = \beta_a\) if \(v(\beta_a, -\beta_a) > v(\beta_c, -\beta_c)\), and \(b_m^* = \beta_c\) otherwise. Notice that

\[
v(\beta_a, -\beta_a) > v(\beta_c, -\beta_c) \iff H^{-1}(\phi) > H^{-1}(\Phi) \iff \phi < \Phi,
\]

where

\[
\Phi \equiv H(-\beta_c) + \mathbb{E}[\beta_a + q] - \beta_a < q < -\beta_c \frac{H(-\beta_a) - H(-\beta_c)}{\beta_a - \beta_c}
\]

(26)

Thus, \(b_m^* = \beta_a\) if \(\phi < \Phi \iff H^{-1}(\phi) > H^{-1}(\Phi)\) and \(b_m^* = \beta_c\) if \(\phi > \Phi \iff H^{-1}(\phi) < H^{-1}(\Phi)\). Also notice that \(H(-\beta_a) > \Phi > H(-\beta_c)\), which implies \(-\beta_a < H^{-1}(\Phi) < -\beta_c\).

Taken together, the three cases above imply that \(b_m^* = \beta_c\) if either \(H^{-1}(\phi) \leq -\beta_a\) or \(-\beta_a < H^{-1}(\phi) \leq H^{-1}(\Phi)\), these two conditions together imply that \(b_m^* = \beta_c\) if \(H^{-1}(\phi) < H^{-1}(\Phi) \equiv \phi > \Phi\). And, the three cases above imply that \(b_m^* = \beta_a\) if either \(-\beta_c \leq H^{-1}(\phi)\) or \(H^{-1}(\phi) < -\beta_c\) and \(H^{-1}(\Phi) < H^{-1}(\phi)\). Since \(H^{-1}(\Phi) < -\beta_c\), these two conditions together imply that \(b_m^* = \beta_a\) if \(H^{-1}(\phi) > H^{-1}(\Phi) \equiv \phi < \Phi\). If \(\phi = \Phi\), both \(\beta_a\) and \(\beta_c\) give the highest possible shareholder welfare.

We conclude that \(b_m^* = \beta_a\) if \(\phi < \Phi \iff v(\beta_a, -\beta_a) > v(\beta_c, -\beta_c)\), and \(b_m^* = \beta_c\) otherwise. The statement of part (ii) then automatically follows from the fact that \(\beta_a = \mathbb{E}[b|b > b_a] > \mathbb{E}[b]\) and \(\beta_c = \mathbb{E}[b|b < b_c] < \mathbb{E}[b]\).

Proof of (iii). Notice that the delegation equilibrium can replicate any conservative (activist) voting equilibrium if we set \(b_m = -q_c\) \((b_m = -q_a)\). Therefore, delegation to the optimal board always weakly dominates the voting equilibrium and strictly dominates it except the knife-edge cases when the voting equilibrium is already efficient, i.e., \(q_c = -b_m^*\) or \(q_a = -b_m^*\). Moreover, except for these knife-edge cases, given the continuity of the expected welfare function around \(b_m^*\), and a strictly possible benefit of delegation at \(b_m^*\), it follows that there is a neighborhood around \(b_m^*\) such that if the manager’s bias is in that neighborhood, then the delegation equilibrium is strictly more efficient than the voting equilibrium.

Proposition 8. Suppose shareholders expect the activist (conservative) equilibrium in the voting game, and the optimal board induces an activist (conservative) equilibrium as well. Then, there exists \(\tau \in (0, 1)\) such that if \(\tau \in (\tau, 1)\), then at least \(1 - \tau\) initial shareholders strictly prefer retaining their voting rights over delegation to the optimal board.

Proof. We present the proof when shareholders expect the voting equilibrium to be activist.
Section B.3 in the Online Appendix presents the proof when the voting equilibrium is expected to be conservative, which is very similar.

The expected payoff of shareholder b when the voting equilibrium is expected to be activist is

$$V_a (b, q^*) = \begin{cases} (e + x) v (b, q^*) - xv (b_a, q^*) & \text{if } b > b_a \\ ev (b_a, q^*) & \text{if } b \leq b_a. \end{cases} \quad (27)$$

Similarly, if shareholder b expects the delegation (to a board with bias $b_m = -q_m$) equilibrium to be activist, his expected payoff is $V_a (b, q_m)$. Recall that the delegation equilibrium is activist if and only if $H (q_m) > \phi \iff -q_m > -H^{-1} (\phi)$.

Consider as an alternative an activist board with bias $b_m = -q_m > -H^{-1} (\phi)$. Shareholder b prefers delegation to such a board over the activist voting equilibrium if and only if $V_a (b, q_a) < V_a (b, q_m)$. We consider several cases:

Case 1: If $b \leq b_a$, then

$$V_a (b, q_a) < V_a (b, q_m) \iff v (b, q_a) < v (b_a, q_m) \iff b_a (H (q_a) - H (q_m)) < H (q_m) \mathbb{E} [\theta | q > q_m] - H (q_a) \mathbb{E} [\theta | q > q_a].$$

(1a) If in addition $q_a > q_m$, then $H (q_a) - H (q_m) < 0$, so

$$V_a (b, q_a) < V_a (b, q_m) \iff b_a > \mathbb{E} [-q | q > q_a],$$

which never holds given that $-q_a > b_a$. Thus, shareholders $b \leq b_a$ never support delegation to a board who is more extreme than the marginal voter, i.e., $q_m < q_a \iff b_m > -q_a$.

(1b) If instead $q_a < q_m$, then $H (q_a) - H (q_m) < 0$, so

$$V_a (b, q_a) < V_a (b, q_m) \iff b_a < \mathbb{E} [-q | q < q_a].$$

Since $b_a < -q_a$, this always holds if $b_a \leq -q_m$ and might even hold if $b_a > -q_m$. Thus, shareholders with $b \leq b_a$ support delegation to a board whenever $-q_m \in (b_a, -q_a)$, and might even do so if $-q_m < b_a$.

Case 2: If $b > b_a$, then (2) and (27) imply

$$V_a (b, q_a) < V_a (b, q_m) \iff v (b, q_a) - \delta v (b_a, q_a) < v (b, q_m) - \delta v (b_a, q_m) \iff$$

$$v (b, q_a) - v (b, q_m) < \delta [v (b_a, q_a) - v (b_a, q_m)] \iff$$

$$b (H (q_a) - H (q_m)) + H (q_a) \mathbb{E} [\theta | q > q_a] - H (q_m) \mathbb{E} [\theta | q > q_m]$$

$$< \delta [b_a (H (q_a) - H (q_m)) + H (q_a) \mathbb{E} [\theta | q > q_a] - H (q_m) \mathbb{E} [\theta | q > q_m]].$$

(2a) If in addition $q_a > q_m$, then $H (q_a) < H (q_m)$, so

$$V_a (b, q_a) < V_a (b, q_m) \iff b > \delta b_a + (1 - \delta) \mathbb{E} [-q | q > q_a] - q_a < -q < -q_m,$$

and notice that since $-q_a > b_a$, then $\delta b_a + (1 - \delta) \mathbb{E} [-q | q < q_a] - q_a < -q < -q_m > b_a.$

49
(2b) If instead \(q_a < q_m \), then \(H(q_a) > H(q_m) \), so
\[
V_a(b, q_a) < V_a(b, q_m) \iff b < \delta b_a + (1 - \delta) \mathbb{E}[-q] - q_m < -q < -q_a.
\]

The overall support for delegation to the board is the combined support of shareholders with \(b \leq b_a \) and \(b > b_a \). Then:

(i) First, consider a board with \(-q_m > -q_a \iff q_m < q_a \). Then only shareholders with \(b > \delta b_a + (1 - \delta) \mathbb{E}[-q] - q_m < -q < -q_m \) support delegation to the board. It follows that if \(1 - G(b_a) < \tau \iff 1 - \delta < \tau \), then this type of board does not obtain \(\tau \)-support.

(ii) Second, consider a board with \(-q_m < -q_a \iff q_m > q_a \). Such a board obtains support from \(b \leq b_a \) if \(b_a < \mathbb{E}[-q] - q_m < -q < -q_a \) and from \(b > b_a \) that satisfy \(b < \delta b_a + (1 - \delta) \mathbb{E}[-q] - q_m < -q < -q_a \). There are two cases:

1. If \(b_a > \mathbb{E}[-q] - q_m < -q < -q_a \), then \(\delta b_a + (1 - \delta) \mathbb{E}[-q] - q_m < -q < -q_a \) < \(b_a \).
 Thus, in this case, there is no support for delegation from either shareholders with \(b \leq b_a \) or from those with \(b > b_a \).

2. If \(b_a < \mathbb{E}[-q] - q_m < -q < -q_a \), then \(\delta b_a + (1 - \delta) \mathbb{E}[-q] - q_m < -q < -q_a \) > \(b_a \).
 Thus, both shareholders with \(b \leq b_a \) and with \(b \in (b_a, \delta b_a + (1 - \delta) \mathbb{E}[-q] - q_m < -q < -q_a] \) support delegation. So overall, delegation receives support from shareholders with \(b < \delta b_a + (1 - \delta) \mathbb{E}[-q] - q_m < -q < -q_a \).
 Notice that \(\mathbb{E}[-q] - q_m < -q < -q_a \) < \(-q_a \), and hence the fraction of initial shareholders supporting delegation is
\[
G(\delta b_a + (1 - \delta) \mathbb{E}[-q] - q_m < -q < -q_a) < G(\delta b_a - (1 - \delta) q_a).
\]

Note that \(\lim_{r \to 1} q_a = -b_a \). Thus, \(\lim_{r \to 1} G(\delta b_a - (1 - \delta) q_a) = G(b_a) < 1 \).

Combining (i) and (ii), we conclude that as \(\tau \to 1 \), no activist board gains \(\tau \)-support from shareholders if they expect the activist voting equilibrium. \(\blacksquare \)