ABSTRACT

We document an increase in cases where credit default swap (CDS) investors intervene in the restructuring of a distressed firm. In our theoretical analysis, we show that—contrary to popular belief—intervention by CDS investors is not necessarily reducing firm value. While the equilibrium CDS spread seems excessive for the protection buyer, that cost is offset by the reduced probability of liquidation. Ex ante borrowing costs go down, and investment and firm value both increase. Under certain assumptions, investment reaches first-best. Our results suggest that the empty creditor problem could be solved by CDS investor intervention.

Keywords: credit default swaps, CDS, empty creditor, bankruptcy, hedge fund activism

JEL classification: G33, G34
Norske Skog, a company based in Norway and one of the world’s leading paper producers, was suffering from years of declining sales leading up to 2016. In March of that year, the company announced that it had raised both debt and equity financing from two hedge funds, Blackstone’s GSO Capital Partners and Cyrus Capital Partners. The interesting part of the deal was that these hedge funds had previously sold Credit Default Swap (CDS) protection on the firm’s debt. Because of their CDS positions, they had an economic incentive to support the distressed firm and to avoid bankruptcy. The deal was controversial because some investors had speculated on the failure of Norske Skog. Among these investors was BlueCrest Capital Management, who had purchased CDSs on the underlying firm.¹

This is not the only case where CDS investors interfered with a corporate restructuring. Table 1 summarizes several cases that have occurred in recent years. The underlying firms include Codere, Caesars Entertainment, Forest Oil, RadioShack, Matalan, Hovnanian, McClatchy, Supervalu, Windstream, and Neiman Marcus. In some of these cases, the protection seller actively intervenes in a distressed firm’s restructuring, while in others it is the protection buyer who tries to trigger a credit event in order to receive a payoff from a CDS contract. What the cases have in common is that a CDS investor with a large position tries to actively influence corporate restructuring. Also, all these cases have occurred recently, between 2013 and 2019.

There is anecdotal evidence, based on an article in the Wall Street Journal, that these cases are just examples of a broader shift in how hedge funds participate in the CDS market.² The Wall Street Journal argues that activist investors are increasingly using long or short positions in the CDS market to affect corporate deals. Starting in recent years, the authors argue, CDS trading activity has shifted to smaller firms, where it is easier to buy a large position in CDSs and use it together with a controlling position in stocks or bonds to influence firms.

In Figure 1, we present suggestive evidence that in recent years, trading activity in the CDS market has indeed moved to smaller firms. Using data from the Depository Trust and Clearing Corporation (DTCC) for 2010Q4–2018Q2, we identify the 10 most actively traded non-financial firms in the CDS market. In each quarter, we count the number of small- to mid-cap firms among this group, defined as having a market capitalization below $50 billion. The details of our sample construction can be found in Appendix A. As Figure 1 shows, the number of small firms among the most actively traded firms used to be low. Over time, the number of small firms has slowly but steadily increased.\(^3\) This suggests that trading activity has shifted from very large firms to smaller firms. The trend in Figure 1 is consistent with the claim in the Wall Street Journal.

Following these cases, several commentators have called for a reform of the CDS market. Some even suggest to shut down the CDS market completely.\(^4\) Even regulators are becoming concerned. The Commodity Futures Trading Commission (CFTC), in an unprecedented move, issued a public warning in 2018 that certain activities of CDS investors could be viewed as market manipulation.\(^5\)

We examine the question of whether the recent rise in CDS investor intervention is beneficial or harmful. In particular, we are interested in the effect on the underlying firm, and use firm value as a proxy for aggregate welfare. We look at two types of CDS intervention. First, we examine what happens if a firm’s lender is allowed to purchase CDS protection, which creates an incentive to push the firm into bankruptcy. Second, we analyze the effect of allowing a protection seller to intervene in the restructuring of a distressed firm. We use a theoretical model to show that the popular conclusion is not necessarily valid. We find that under symmetric information, hedging by a lender together with CDS seller intervention actually increases firm value instead of destroying it.

\(^3\)In unreported tests, we show that the increase is even larger if we only look at the top five firms.

\(^4\)Financial Times, “Time to wipe out the absurd credit default swap market”, May 11, 2018.

We start with a model where the firm’s lender can purchase CDS protection but without the ability of the protection seller to intervene in a debt restructuring. This model, which is an extension of the well-known theory in Bolton and Oehmke (2011), allows us to understand cases like Caesars Entertainment, Windstream, and Neiman Marcus in Table 1. The economy consists of a firm, a lender, and a protection seller. The firm’s owner faces multiple frictions like the inability to commit to repaying the debt in the future, taxes, and bankruptcy costs. These frictions constrain the firm and prohibit it from investing at the first-best level.

In our first set of results, we show that the existence of a CDS market, without an active protection seller, has both negative and positive effects on firm value. On the one hand, a lender who is hedged with credit derivatives is better off in bankruptcy than in an out-of-court debt restructuring. This increases the probability of costly liquidation, which increases borrowing costs and reduces firm value ex ante. On the other hand, if an out-of-court restructuring is less likely to be successful, it reduces the incentives of the firm to engage in strategic default (i.e., to pay less than the face value of debt even though the firm has sufficient assets). Also, the lender’s payoff in an out-of-court restructuring is higher with a CDS market. Together, these two effects alleviate the commitment problem between equity holders and the lender. This decreases upfront borrowing costs and increases firm value. The net effect on firm value can be either positive or negative and depends on parameter values. We show that the value effect is positive if the lender’s bargaining power is low, if bankruptcy costs are high, or if the probability of renegotiation failure is high.

We extend the active CDS buyer model by allowing the CDS seller to intervene in the firm’s debt restructuring. This model allows us to understand cases like Norske Skog and RadioShack in Table 1. The protection seller can reduce the firm’s debt by injecting equity capital. The results of this small change in the model are remarkable. Firm investment increases substantially towards the first-best level. The reason is that the probability of liquidation drops because the protection seller injects enough equity to keep the firm alive.
This reduces the cost of borrowing ex ante, which allows the firm to invest more. Remarkably, under certain assumptions on parameter values, the probability of liquidation drops to zero and investment reaches the first-best level.

Another interesting result is that even though the probability of liquidation is extremely low, the debt holder purchases a large amount of CDS contracts. This initially counter-intuitive outcome is an important feature of the equilibrium: It is precisely because the lender purchases a lot of protection that the CDS seller has a strong incentive to save the firm if it is in distress. The lender understands this and buys more CDS protection ex ante.

A related surprising result is that the protection seller charges a positive CDS spread up-front, even though a credit event is never triggered in equilibrium. At first sight, this might seem counter-intuitive and unfair. A casual observer might complain that the protection buyer pays an excessively high insurance premium. But the premium is just fair compensation for the protection seller for saving the firm from costly liquidation. Actually, the seller is providing a valuable service to society, by avoiding costly liquidation. On average, the protection seller does not make a profit but breaks even.

Our results on the effect of intervention by a protection seller on firm value might seem—at first sight—to be an implication of the Coase Theorem. After all, should we not expect firm value to increase if we allow all the protection sellers to sit at the bargaining table? We show that this analogy is flawed. The Coase Theorem is about how ex post bargaining between two parties can avoid inefficient outcomes. However, some of our most interesting results are not the efficient outcome ex post, but what happens ex ante. And even what happens ex post in our model is different from the simple Coasian prediction.

To see this, note that we refer to ex post as everything that happens after the firm’s final profit shock realizes. If the lender is hedged with a CDS contract, and if the realization of the profit shock is sufficiently low, then the lender’s outside option in debt renegotiation is very high relative to the firm’s asset value. This makes debt renegotiation infeasible and so the
firm is liquidated. The lender’s tough stance in debt renegotiation effectively pushes the firm into bankruptcy. To avoid a negative cash flow shock, the protection seller therefore makes a payment to the owner—not to the lender—to avoid liquidation. This is already different from the Coasian setup, because it is the lender who effectively causes the deadweight cost of liquidation, but the protection seller makes a payment to a different party—the owner—to avoid the inefficiency. Additionally, our results on the ex ante effects on the lender and the firm further differentiate our findings from the Coase Theorem.

Our model also provides multiple novel testable predictions. For example, we predict that following an exogenous increase in the number of protection sellers, the probability of bankruptcy and CDS spreads will increase. We do not explicitly test these predictions, because the opacity of the CDS market makes it difficult to empirically determine the number of protection sellers, let alone to find an exogenous shock to that number. In the future, as data availability improves, these predictions should become directly testable.

Our findings also have important policy implications. First, the notion that intervention by CDS investors is unfair and reduces welfare—while intuitive—is not necessarily true. With the caveat that we only consider two types of CDS investor intervention, we show that such activism can actually increase firm value. However, we also argue that this result depends on our assumption of symmetric information. If there is a lot of uncertainty about the number of protection sellers for a particular underlying, our results can break down. Therefore, we argue that a more transparent CDS market might help to ensure that underlying firms benefit from the value-enhancing effects of a CDS market. We discuss possible policy measures to improve transparency. For example, similarly to the stock market, where holdings above a certain threshold have to be reported to the SEC, a reporting requirement for protection sellers could lead to lower CDS spreads, fewer bankruptcies, more investment, and higher firm value.
We contribute to multiple strands of the literature. First, our active CDS buyer model examines the positive and negative effects of introducing a CDS market on firm value, without allowing for intervention by the protection seller. The trade-off presented here is the same as in the seminal model of Bolton and Oehmke (2011). However, Bolton and Oehmke do not explicitly compare the positive and negative effects on firm value and they do not calculate the net value effect. We show that the net value effect can be both positive or negative, and we show which parameter values lead to higher firm value.

The sign of the net effect is important because there are multiple empirical papers on the effect of CDS markets on firm value, Tobin’s Q, and investment. Most of these papers regress the outcome variable of interest on either a CDS dummy or the interaction of a CDS dummy and a firm characteristic. We show that such a simple reduced-form regression specification—even in the absence of endogeneity problems—can be problematic when used to test the theory. Our results can be used to design better econometric tests of the effect of CDS markets on firm value as well as on other variables of interest.

Our second major contribution is to document the recent empirical trend towards CDS interventions. Some cases of intervention by protection buyers were already documented in Bolton and Oehmke (2011), but other types of CDS intervention seem to be new. In our theoretical analysis, we focus on two types of CDS intervention and show that this activity increases firm value instead of destroying it. To the best of our knowledge, this is the first detailed examination of the value effects of CDS intervention. We show that under certain assumptions on the distribution of the firm’s future profitability, the benefits of an active protection seller can be so large that the firm reaches the first-best level of investment. Compared to the theoretical framework of Bolton and Oehmke (2011), this implies that the

6Their theoretical framework has since been extended by Kim (2016), Campello and Matta (2016), Bartram, Conrad, Lee, and Subrahmanyam (2018), Colonello, Efing, and Zucchi (2018), Danis and Gamba (2018), and Wong and Yu (2018), among others.

negative effect of a CDS market, which derives from the so-called empty creditor problem, is reduced to zero, and only the positive effects prevail. In other words, we show that the empty creditor problem is no longer a problem, at least under our parameterization. We believe that this is a significant contribution to our current understanding of the costs and benefits of having a CDS market.

1. Model with an active CDS buyer

We present a model that builds on Bolton and Oehmke (2011), with a few extensions. We allow the firm to issue both equity and debt to finance investment, as opposed to using only debt. We also introduce an optimal trade-off between debt and equity, a continuously distributed profitability shock, and a continuous investment variable. This version of the model can also be viewed as a static version of the dynamic model in Danis and Gamba (2018). The static nature of the model allows us to derive results in closed form, at least for some special cases.

All agents in the model are risk-neutral. We model a single firm, owned by an entrepreneur who makes investment and financing decisions to maximize her expected payoff at the beginning of the period. The main driver of the model is the firm’s profit shock, a continuous-state random variable. The probability of the end-of-period shock, z, is determined by the cumulative distribution function $\Gamma(z)$.

We denote by k the capital stock for the period. To finance the investment, the firm issues debt alongside a possible equity injection. The debt contract is an unsecured zero-coupon bond with face value b paid at the end of the period. Both k and b are non-negative. Debt financing is cheaper than equity financing for two reasons. First, we assume that there are proportional equity issuance costs, captured by the parameter λ. Second, we assume that debt payments reduce the corporate income tax base. The corporate tax rate is τ. Since the
debt is a zero-coupon bond, we assume for simplicity that the whole face value is deductible. Because this overstates the tax benefits of debt compared to the real world, we compensate by parameterizing the tax rate accordingly.

The firm’s profit shock determines the asset value at the end of the period:

\[a(z, k) = zk^\alpha, \]

where, \(\alpha \in]0, 1[\) is the return-to-scale parameter.

After the realization of \(z \), the owner decides whether to pay \(b \) in full, to renegotiate the debt by paying an amount \(b_r \), or to file for bankruptcy and liquidate the firm. The owner cannot commit not to default on the debt in the future. If the debt is renegotiated, we assume that renegotiation may fail for exogenous reasons with probability \(\gamma \in [0, 1[\), in which case the firm is liquidated, the debt holder receives \((1 - \xi)a(z, k)\), and the owner receives nothing. The parameter \(\xi \) represents bankruptcy costs, with \(\xi \in]0, 1[\).

We assume a competitive market for insuring against credit risk. In particular, the debt holder can purchase a CDS from a dealer (protection seller) at the time the debt contract is issued. The lender (protection buyer) chooses the fraction \(h \) of the debt exposure covered by the CDS contract. The dollar amount, or notional amount, of insured debt is therefore \(hb \). After observing \(h \), the protection seller sets the CDS spread (the insurance premium) accordingly. The CDS spread is endogenously determined and the protection seller has rational expectations: he understands that selling CDS protection to the debt holder may change both the probability of default and the debt payoff in default and adjusts the CDS spread accordingly.

The debt holder chooses the hedge ratio, \(h \), to maximize his expected payoff. Because we assume that the credit risk market is competitive, the CDS spread is fair (and the transaction
has zero–NPV for the protection seller). In the first part of this section, \(h \) will be an arbitrary hedge ratio. We discuss later how the optimal hedge ratio is determined.\(^8\)

The sequence of events is as follows. The firm owner chooses a capital level \(k \) and a face value of debt \(b \). The debt holder observes the outcome of these decisions and chooses a hedge ratio \(h \). At the end of the model, nature chooses a productivity shock \(z \), and the owner decides between repaying the debt, renegotiating with the debt holder, or liquidating the firm. The timeline of events is summarized in Figure 2.

We next describe the payoffs to equity and debt as a function of the owner’s default decision. The payoff to equity at the end of the period is \(a - b \) if the debt is repaid, \(a - b_r \) if the debt is successfully renegotiated, and \(\max\{(1 - \xi)a - b, 0\} \) if the firm is liquidated. The corresponding payoff to debt is \(b \) when it is repaid in full, and \(b_r \) in case of successful renegotiation. In the case of liquidation, if the liquidation payoff is less than the face value of debt, or \((1 - \xi)a \leq b \), the payoff to debt is \(hb + (1 - h)(1 - \xi)a \). The term \(hb \) represents the payment from the protection seller, while the term \((1 - h)(1 - \xi)a \), which can be written as \((1 - \xi)a - h(1 - \xi)a \), is the liquidation value of the firm, net of the payment to the protection seller.

We derive the optimal default decision for the two cases \((1 - \xi)a > b \) and \((1 - \xi)a \leq b \) separately. When the owner’s liquidation payoff is positive, or \((1 - \xi)a > b \), the threat of debt renegotiation is not credible because the debt holder can recover the full face value of debt in liquidation. The owner herself prefers repayment to liquidation, because the payoff under debt repayment, \(a - b \), is higher than the liquidation payoff, \((1 - \xi)a - b \). Therefore, debt is always repaid if \((1 - \xi)a > b \).

\(^8\)There are no speculators in the CDS market in our model, and therefore no so-called naked CDS positions. The only agent who buys CDS protection in equilibrium is the lender. However, speculators would not change much in this framework. By definition, they do not own the debt of the underlying firm, so they cannot participate in any debt restructuring. Therefore, they would not have any effect on the probability of default or on the recovery rate in default.
On the other hand, if the liquidation payoff to equity is zero, $(1 - \xi)a \leq b$, then debt renegotiation leads to the following Nash bargaining problem:

$$b_r(z, k, b, h) = \arg\max_p [a - p]^{1-q} \times [p - hb - (1 - h)(1 - \xi)a]^q,$$ \hspace{1cm} (2)

where $q \in [0, 1]$ is the exogenous bargaining power of the debt holder. The bargaining problem has two constraints, $a - p \geq 0$ and $p \geq hb + (1 - h)(1 - \xi)a$. The first constraint states that the owner’s payoff after successful renegotiation, $a - p$, must be at least as large as her outside option. Similarly, the second constraint makes sure that the debt holder’s renegotiation payoff p is not below his outside option. The Nash bargaining problem, together with the constraints, is important for the results of the model. If the hedge ratio h is sufficiently high, then the outside option of the debt holder $hb + (1 - h)(1 - \xi)a$ is so large that there is no p that can satisfy the two constraints. The result is that renegotiation is not feasible. And even if renegotiation is feasible, a higher hedge ratio increases the payoff to the debt holder, because the p that solves the bargaining game is increasing in the debt holder’s outside option.

The debt holder’s optimal hedging policy, the firm’s optimal default policy, and the outcome of the bargaining game is summarized in the following proposition:

Proposition 1. Given the choices k and $b > 0$:

1. The optimal hedge ratio is $h^* \in [0, 1]$.

2. The optimal default policy depends on a: it is optimal for the owner to repay the debt for $a \geq a_P$, to attempt renegotiation for $a_R \leq a < a_P$, and to liquidate the firm for $a < a_R$, where

\[a_R = \frac{hb}{1 - (1 - h)(1 - \xi)}, \quad a_P = \frac{b[1 - h(1 - \gamma)(1 - q)]}{1 - (1 - \gamma)(1 - q)[\xi + h(1 - \xi)]}, \]
and $a_R < b < a_P$.

3. The introduction of a CDS market is equivalent to an increase in the hedge ratio from $h = 0$ to $h^* \in [0, 1]$. This decreases a_P and increases a_R. The first effect leads to more likely repayment of debt and less likely renegotiation. The second effect increases the probability of liquidation and reduces the probability of renegotiation.

4. If renegotiation occurs in equilibrium, the renegotiated debt payment can be written as

$$b_r = hb + (1 - h)(1 - \xi)a + q[a - hb - (1 - h)(1 - \xi)a]. \quad (3)$$

Since b_r is increasing in the hedge ratio h, the introduction of a CDS market increases the payoff to the debt holder in renegotiation.

The proof is in Appendix B. Figure 3 shows the optimal default decision. Low asset values lead to liquidation, intermediate asset values trigger renegotiation, and high values of a lead to debt repayment.

Proposition 1 and Figure 3 also summarize nicely the positive and negative effects of CDS contracts. On the one hand, if the hedge ratio increases from $h = 0$ to $h = h^*$, the threshold a_P decreases, which means that repayment is more likely to occur, while renegotiation is less likely. This is good for the debt holder, which he anticipates when the debt is issued, and this decreases credit spreads. There is a second positive effect of introducing a CDS market for the lender. This effect operates through an increase in b_r, the payoff to debt holder in a future renegotiation. On the other hand, if the hedge ratio h increases, the threshold a_R increases, which makes liquidation more likely and renegotiation less likely, reducing the expected payoff to the debt holder. Anticipating this outcome, he adjusts credit spreads upwards when the debt is issued.
The model encompasses also the case without a CDS market. More details about this case are in Appendix C. If the debt holder has no CDS protection (i.e., \(h = 0 \)), the debt is renegotiated if \(a < a_P \), and it is repaid if \(a \geq a_P \).

We now turn to the owner’s ex ante decision. The owner maximizes the cum-dividend value of equity (i.e., of the firm), defined as

\[
V(k^*, b^*, h(k^*, b^*)) = \max_{k, b} V(k, b, h(k, b)) = \max_{k, b} \left\{ \left[m(k, b) - k \right] (1 + \lambda 1_{m(k, b) < k}) \right. \\
\left. + \frac{1 - \tau}{1 + r} \left[\int_{z_R}^{z_P} (1 - \gamma)(a(z, k) - b_r)d\Gamma(z) + \int_{z_p}^{\infty} (a(z, k) - b)d\Gamma(z) \right] \right\},
\]

where \(m(k, b) \) denotes the equilibrium price of debt, which we will derive later on. The dividend \(m(k, b) - k \) can have either sign; if it is negative, it is the amount of injected equity capital. In this case, the firm incurs a transaction cost \(\lambda \) per unit of equity capital. The parameter \(\tau \) is the corporate income tax rate. The limits of the integrals are \(z_R = a_R/k_0 \) and \(z_P = a_P/k_0 \). While \(a_P \) and \(a_R \) are functions of \((b, h)\), and \(b_r \) is a function of \((a(z, k), b, h)\), in what follows we suppress these dependencies for notational convenience.

The debt holder maximizes his expected payoff, denoted by \(M \), by choosing the hedge ratio:

\[
m(k, b) = \max_h \frac{1}{1 + r} M(k, b, h).
\]

The solution of the above program, \(h = h(k, b) \), is the state-contingent optimal hedge ratio that is considered in the owner’s program in (4).

To find \(M \), the expected payoff to the debt holder, we first derive the fair price of the CDS contract. The credit event that triggers the CDS payment is bankruptcy/liquidation. An out-of-court debt restructuring does not trigger a CDS payment, in line with the Standard
North American Contract (SNAC) of the International Swaps and Derivatives Association (e.g., Bolton and Oehmke (2011)). The price of credit protection for a given hedge ratio $h \in [0, 1]$ is the expectation of the net compensation from the protection seller:

$$C(k, b, h) = \int_0^{z_R} [hb - h(1 - \xi)a(z, k)] \, d\Gamma(z) + \int_{z_R}^{z_p} \gamma[hb - h(1 - \xi)a(z, k)] \, d\Gamma(z). \quad (6)$$

The first integral is the expected payoff in a deliberate liquidation, while the second integral is the expected payoff in a failed renegotiation.

The expected payoff to the debt holder, including the payment from the protection seller in case of a credit event, but excluding the insurance premium $C(k, b, h)$, is

$$\psi(k, b, h) = \int_0^{z_R} [hb + (1 - h)(1 - \xi)a(z, k)] \, d\Gamma(z)$$

$$+ \int_{z_R}^{z_p} [(1 - \gamma)b_r + \gamma[hb + (1 - h)(1 - \xi)a(z, k)]] \, d\Gamma(z) + \int_{z_p}^{\infty} b \, d\Gamma(z). \quad (7)$$

The expected value of the debt for a given hedge ratio, h, net of the cost of the CDS is

$$M(k, b, h) = \psi(k, b, h) - C(k, b, h).$$

After simplifying, the price of debt and the optimal h are found by solving the program

$$m(k, b) = \max_h \frac{1}{1 + r} \left[\int_0^{z_R} (1 - \xi)a(z, k) \, d\Gamma(z)$$

$$+ \int_{z_R}^{z_p} [(1 - \gamma)b_r + \gamma(1 - \xi)a(z, k)] \, d\Gamma(z) + \int_{z_p}^{\infty} b \, d\Gamma(z) \right]. \quad (8)$$

1.1. The effect of CDSs on firm value

Since the full model cannot be solved in closed-form, we solve it numerically. We assume that z follows a uniform distribution, $z \sim U[0, Z]$, and use the parameter values in Table 2.
We define several variables that allow us to illustrate how the introduction of a CDS market affects various firm outcomes. These variables are the total firm value, $V(k^*, b^*, h(k^*, b^*))$, the dividend, $m(k^*, b^*) - k^*$, the optimal hedge ratio, h^*, the credit spread, the optimal face value of debt, b^*, the optimal capital stock, k^*, and quasi-market leverage, $b^*/V(k^*, b^*, h(k^*, b^*))$.

Figure 8 presents a sensitivity analysis of the above metrics with respect to q, the debt holder’s bargaining power. Most importantly, it compares firm value with a CDS market to firm value in an economy without CDSs. The plot for firm value shows nicely that there are both positive and negative value effects, and that the net value effect depends on parameter values. For low values of the lender’s bargaining power, with-CDS firm value exceeds the no-CDS firm value. For high values of bargaining power, the opposite is true.

To understand where these opposing effects on firm value come from, it is important to understand the constrained situation of this firm. Most importantly, there is a commitment problem between the owner and the lender. The owner cannot commit to repay the debt in the future. In some states of nature, she renegotiates even though the firm would have enough profits to repay the debt. Other frictions include taxes, equity issuance costs, bankruptcy costs, and renegotiation failure. As a result of all these frictions, the firm cannot invest as much in capital as it would want to in a first-best world with no frictions.

The reason why CDSs create value is that they alleviate the commitment problem between the owner and the lender. By hedging with CDS contracts, the debt holder improves his bargaining position in any future renegotiation. This has two positive effects: First, it increases the lender’s payoff in renegotiation. Second, it reduces the owner’s incentive to renegotiate, especially in the states of nature where the asset value would be high enough to repay the debt. In other words, it reduces the probability of strategic default. This is why the effect of CDSs on firm value is particularly large for low values of q. If the lender’s bargaining power is low, then he is particularly vulnerable to strategic default, because the owner can extract larger rents from him. As a consequence, a low q should create a strong
incentive to hedge with CDS contracts. This is exactly what is shown in the subplot for the hedge ratio.

The lower risk of strategic default ex post leads to lower credit spreads ex ante. This is shown in the plot for the credit spread. As the cost of debt financing decreases, the owner issues more debt, which can be seen in the plot for the book value of debt. Also, the owner substitutes costly equity financing with cheaper debt financing. In the plot for quasi-market leverage, one can see that at low values of q, CDSs increase leverage. The reduction in the cost of debt is an important source of value creation. It exists even for a fixed amount of capital k. Additionally, these new funds are used to invest in capital, which is shown in the plot for capital stock. So the owner can move closer to the first-best level of capital stock. Overall, the net effect of CDSs on firm value, or value effect, can be decomposed into a financial effect, which holds even for constant capital, and a real effect, which allows for an endogenous increase in investment.

For intermediate to high values of the lender’s bargaining power, the net effect of CDSs on firm value is negative. The downside of allowing the debt holder to hedge with CDS contracts is that renegotiation is sometimes infeasible. Since renegotiation is less costly than bankruptcy, in some states of nature it would have been better to renegotiate debt, but instead, the firm has to file for bankruptcy. The underlying problem here is that the lender chooses the hedge ratio h to maximize the value of his own claim, not total firm value. As a result, the lender over-insures relative to the hedge ratio that would maximize firm value. For high values of q, this negative effect of CDS contracts dominates the positive effects, which creates the negative net effect on firm value.

In the limit, as q moves closer to 1, the debt holder has all the bargaining power. The owner cannot extract any rents from the lender, which alleviates the agency conflict between the two parties. As a result, the cases with and without CDSs are identical, making CDSs redundant.
While the magnitude of the effect of CDSs on firm value is relatively small (less than 1% in Figure 8), the purpose of this analysis is to examine the determinants of the sign of the effect. An extension to a dynamic model and a detailed calibration is outside of the scope of this paper.

Figure 9 shows that the amount of value created is positive for high values of the liquidation cost ξ, and negative for low values of ξ. The intuition is that a higher liquidation cost reduces the outside option of the debt holder in bargaining, which allows the owner to extract higher rents. The debt holder is aware of this, so he purchases more CDS contracts to improve his outside option. CDS contracts become redundant in the limit where ξ approaches zero.

Figure 10 depicts comparative statics with respect to γ, the probability of renegotiation failure. For low values of γ, the value effect is negative, and for high values of γ, it is positive. The probability of renegotiation failure has both positive and negative consequences for the debt holder. On the one hand, it reduces the incentive of the owner to renegotiate. This decreases the likelihood of (attempted) debt renegotiation and increases the probability of debt repayment. Since CDSs are another way to reduce the probability of renegotiation, a higher γ reduces the need to buy CDS contracts. On the other hand, conditional on an attempted debt renegotiation, it increases the chance of failure. The lender’s payoff in a successful renegotiation, b_r, is increasing in h. Therefore, buying CDSs can offset the loss in expected payoff. These two effects approximately offset each other, which is why the plot for the hedge ratio is almost constant. For low values of γ one effect dominates, and for high values of γ the other dominates.

In addition to revealing the parameter values under which the value effect of CDS introduction is positive, our comparative statics exercises also have important implications for empirical tests. Our results imply that the theory in Bolton and Oehmke (2011) or its many extensions cannot be easily tested using a reduced-form regression.
For example, regressing firm value (or Tobin’s Q, or investment) on a proxy for one of the three exogenous parameters \(q, \xi, \) or \(\gamma, \) interacted with a CDS dummy, cannot be used to test the theory. This is important because similar regression specifications are often used in the empirical literature mentioned in the introduction. Figures 8–10 show that the net effect on firm value, i.e., the difference between the diamonds and the crosses in the first subplot of each figure, is not a monotonic function of the exogenous parameter. Additionally, we have found in unreported tests that the shape of the relationship between the value effect and a particular exogenous parameter changes with different values for the other exogenous parameters. Making things even more difficult for econometricians, the shape of the relationship between the value effect and a parameter changes with different distributional assumptions for profitability \(z. \) We show this in unreported tests by assuming a log-normal distribution for \(z. \)

As a result, a simple reduced-form regression specification cannot be used to test this theory and potentially other related theories as well. As a possible solution to this problem, structural estimation could be used to estimate the unobserved parameters of the model as well as the effect of CDS introduction on firm value and on other outcome variables.

To conclude, we show that the net value effect of introducing a CDS market can be either positive or negative, depending on parameter values. In the next section, we show that allowing the protection seller to intervene changes this conclusion significantly.

2. Model with an active CDS seller

In order to explore the effect of an active protection seller on default outcomes and firm value, we start with simplifying the active CDS buyer model introduced in the previous section so that it can be solved in closed form. Note that in the active CDS buyer model, the CDS dealer cannot provide financing to the underlying firm. A real-life motivation for
this assumption is that there is actually a large number of dealers, each with a tiny portion of the CDS contract, which means that none of them have an incentive to save the firm. Another interpretation of this model is a world where the regulator forbids dealers to interfere with the distressed firm. After solving the simplified active CDS buyer model in closed form, we extend the model to allow for a protection seller to intervene in the underlying firm.

2.1. Simple version of the active CDS buyer model

For simplicity, we set the probability of renegotiation breakdown to $\gamma = 0$, bankruptcy costs to $\xi = 1$, the lender’s bargaining power to $q = 0$, the risk-free interest rate to $r = 0$, and equity issuance costs to $\lambda = 0$. These assumptions allow us to solve the model in closed form and to present the economic mechanism in a transparent way.

Under these parameter values, we know from Proposition 1 that the default decision of the owner can be summarized as in Figure 4.

Following Equation (8), the value of debt can be written as

$$m(k, b) = \max_h \int_{z_R}^Z b_r d\Gamma(z),$$

where $z_R = a_R/k^\alpha$. Under our parameter assumptions, we have that $b_r = hb$ and $a_R = hb$.

As before, the profitability shock z follows a uniform distribution, $z \sim U[0, Z]$. Under this assumption, one can show that the optimal hedge ratio is $h^* = 1$.\(^9\)

\(^9\)It is sufficient to show that $\partial M/\partial h$ is positive for all $h \in [0, 1]$ because of Proposition 1. The derivative of Equation (9) with respect to h is $b(Zk^\alpha - 2hb)/Zk^\alpha$. This is trivially positive at $h = 0$. At $h = 1$, it is positive if and only if $b \leq Zk^\alpha/2$. We will make the assumption $b \leq Zk^\alpha/2$ at this point and verify that it is true below, in Equation (12). Under this assumption, the derivative $\partial M/\partial h$ is also positive for all $h \in [0, 1]$.
Finally, we solve the owner’s investment and financing problem,

\[
V(k^*, b^*, h(k^*, b^*)) = \max_{k, b} V(k, b, h(k, b)) \\
= \max_{k, b} \left\{ m(k, b) - k + \frac{1 - \tau}{1 + \tau} \left[\int_{z_R}^{Z} (a(z, k) - b_r) d\Gamma(z) \right] \right\}, \tag{10}
\]

where \(m(k, b)\) denotes the equilibrium price of debt given in (9).

Using the assumptions on the parameters and using the optimal hedge ratio, and substituting the equation for debt into Equation (4), firm value can be simplified to

\[
V(k, b, h)|_{h=1} = -k + \int_{z_R}^{Z} z k^\alpha d\Gamma(z) - \tau \int_{z_R}^{Z} (z k^\alpha - b) d\Gamma(z), \tag{11}
\]

where \(z_R = b/k^\alpha\). For an arbitrary level of capital, the optimal amount of debt can be found by solving the first order condition with respect to \(b\), which yields

\[
b^*(k) = \frac{Z k^\alpha \tau}{1 + \tau}. \tag{12}
\]

Using the previous result, one can solve the first order condition with respect to \(k\) to find the optimal level of capital:

\[
k^* = \left(\frac{\alpha Z}{2(1 + \tau)} \right)^{\frac{1}{1-\alpha}}. \tag{13}
\]

Note that the first-best level of capital would be

\[
k_{FB} = \left(\frac{\alpha Z}{2} \right)^{\frac{1}{1-\alpha}}.
\]

The equilibrium level of capital \(k^*\) is below the first-best level because of three remaining frictions in the economy: taxes, bankruptcy costs, and the firm’s lack of commitment to repaying the debt in the future. We will now show that the firm can move closer to the first-best solution if the protection seller is allowed to be more active.
2.2. Extension: Protection seller can intervene

We extend the previous model by allowing the protection seller to intervene by injecting equity into the firm to reduce the debt. The interpretation of this model is that sometimes there are fewer protection sellers, so they have a stronger incentive to save the firm. Another interpretation is that the regulator allows CDS sellers to intervene in distressed firms. To fix ideas, we will think of the previous model as one with a continuum of protection sellers, and this extension as one with a single CDS seller.

The main change in the model is that after nature has chosen profitability z, the dealer makes a take-it-or-leave-it offer to the owner. The dealer offers to recapitalize the firm by reducing the face value of debt to a new level $b_n \leq b$, through an equity injection in the amount of $b - b_n$. In return, the dealer asks for an equity stake of $\theta \in [0, 1]$ in the restructured firm.\(^{10}\) The owner can accept or reject the offer. After the debt restructuring, the equity holders\(^{11}\) make the default decision (i.e., repay/renegotiate/liquidate). For simplicity, we assume that the debt holder can only purchase CDS protection but cannot sell it, or $h \geq 0$. The timeline of events is now slightly different, as depicted in Figure 5.

It is useful to write down the terminal payoffs of each player in this game, for each possible outcome of the firm’s default decision. Table 3 summarizes these payoffs.

\(^{10}\)One could also assume other types financing such as debt. We choose equity financing for simplicity. With debt financing, the dealer would want to make sure that the new debt does not trigger a credit event. This can be achieved by providing a debt contract with a maturity that exceeds the maturity of the CDS contract. Alternatively, the protection seller can provide short-term debt, but require the underlying company to issue the debt through a separate legal entity. In either case, the model would become unnecessarily complicated. Empirically, we observe both equity injections (e.g., Norske Skog) and debt injections (e.g., RadioShack, Matalan, or McClatchy).

\(^{11}\)We refer to the residual claimants as equity holders because in some states of the world the original owner accepts the offer and the dealer also becomes an equity holder.
The first step to solve the model is to examine the equity holders’ default decision. We know that renegotiation is feasible if there is at least a p such that the two conditions $a - p \geq 0$ and $p \geq hb$ are simultaneously satisfied, which is equivalent to condition

$$hb \leq a.$$ \hspace{1cm} (14)

Analogously to the full active CDS buyer model, see Equation (3), the renegotiated debt repayment is $br = hb$. Notice that even if debt is reduced from b to b_n, the renegotiation outcome depends on the original face value b. This is because the CDS contract was purchased on the original debt. This feature of br is important for many of the results below.

To solve the model, we make the following conjecture: The debt holder’s optimal hedge ratio is $h \leq 1$. This conjecture greatly simplifies the exposition of the model solution. We prove that this conjecture is correct in Appendix D.

If renegotiation is feasible, the equity holders prefer repayment to renegotiation if $a - b_n \geq a - br$, or equivalently, if $b_n \leq hb$. If renegotiation is infeasible, the equity holders prefer repayment to liquidation if $a - b_n \geq 0$, or $b_n \leq a$.

The optimal default decision of the equity holders depends on b_n and hb and is described in the following lemma. The proof is in Appendix E. The default decision is summarized graphically in Figure 6.

Lemma 1. We can distinguish between two cases. If $b_n \leq hb$, the optimal decision is to liquidate if $a < b_n$ and to repay the debt if $a \geq b_n$. If $b_n > hb$, the optimal decision is to liquidate if $a < hb$ and to renegotiate if $a \geq hb$.

The intuition for this result is the following. For brevity, we focus on the case where the debt is reduced substantially to $b_n \leq hb$. If the firm’s asset value is below the reduced face value of debt, $a < b_n$, the equity holders choose to liquidate the firm and their payoff is zero, due to limited liability. If they repaid the debt instead, their payoff would be less
than zero. Renegotiating the debt is not an option, because the debt holder wants to be paid at least hb, which is more than the total asset value of the firm. For high asset values, the owners opt for repaying the debt, because it is better than the prospect of renegotiation. In renegotiation, the debt holders want at least hb, but with repayment, the equity holders only need to pay bn, with $bn \leq hb$.

The most important observation about this lemma is that if the debt is reduced a lot, then liquidation occurs only in the states $a < bn$, whereas if the debt is only reduced a little, then the firm files for bankruptcy in more states, $a < hb$. Since liquidation is socially costly, it is important for ex ante firm value to reduce the probability that it occurs in equilibrium.

Next, we find the owner’s optimal decision on whether to accept the protection seller’s take-it-or-leave-it offer. In equilibrium, the protection seller will propose an equity stake θ for himself that makes the owner indifferent between accepting and rejecting. As Figure 6 shows, the default decision and the resulting payoffs depend on the region in which a lies. For each case and each region, we determine θ by equating the owner’s payoff under acceptance to his payoff under rejection.

The optimal choice of the equity stake θ is summarized in the following lemma. The proof is in Appendix F.

Lemma 2. If $bn \leq hb$, then the protection seller’s equity stake is

$$\theta = \begin{cases} 1 - \frac{a-hb}{a-bn} & \text{if } a \geq hb, \\ 1 & \text{if } a < hb. \end{cases}$$

If $bn > hb$, then

$$\theta = \begin{cases} 0 & \text{if } a \geq hb, \\ 1 & \text{if } a < hb. \end{cases}$$
In simple terms, the mechanism behind this result is as follows. For brevity, we only cover the first case, \(b_n \leq h b \). If the asset value is high, then the owner has to decide between accepting the equity injection, in which case she will own a smaller share of a firm with a smaller debt load, or rejecting the offer, which would allow her to keep the whole firm, but with a higher debt burden. This tradeoff has an interior solution, which is \(\theta = 1 - \frac{a-hb}{a-b_n} \). If the asset value is low, the owner would get zero if she rejected the offer, because the debt load of the firm relative to the asset value would be so high that the firm would have to be liquidated. Therefore, the protection seller can take the whole firm \((\theta = 1) \) and get away with it.

Next, we solve the dealer’s choice of the reduced face value of debt \(b_n \). The protection seller maximizes the algebraic sum of the expected value of his (negative) CDS payoff in liquidation, of his (positive) payoff as a future equity holder, and his (negative) payoff from injecting equity capital in the amount of \(b - b_n \) into the firm. We do not include his cash inflow from the upfront insurance premium, because that is sunk at this point.

The dealer’s optimal choice of \(b_n \) is summarized in the following lemma. For ease of exposition, we assume that the hedge ratio is \(h > 1/2 \), which is true in equilibrium, as we will show below. The proof, which includes the derivation for an arbitrary hedge ratio, is in Appendix G.

Lemma 3. At the equilibrium hedge ratio \(h \), the new amount of debt is

\[
b_n = \begin{cases}
 b & \text{if } a < b - h b, \text{ followed by liquidation}, \\
 a & \text{if } b - h b \leq a < h b, \text{ followed by repayment}, \\
 b & \text{if } a \geq h b, \text{ followed by renegotiation}.
\end{cases}
\]

If firm value turns out to be very low, \(a < b - h b \), then the protection seller does not reduce debt at all. This is because he would need to inject so much equity that it is not
worth it for him to avoid the cash outflow associated with a credit event. If the asset value realization is in an intermediate range, $b - hb \leq a < hb$, then the protection seller reduces the debt to $b_n = a$. Interestingly, this is exactly the face value that avoids liquidation later. We know from Lemma 1 that liquidation only occurs if $a < b_n$. In other words, the protection seller injects just enough equity to avoid liquidation. This intuitively makes sense, because a liquidation would create a large cash outflow for the protection seller. He can avoid this large cash outflow by injecting a little bit of equity into the firm.

If the asset value is very high, $a \geq hb$, the protection seller does not inject any equity, which means the principal remains unchanged. The reason is that the protection seller has no incentive to reduce the debt: A debt reduction is costly because he has to inject equity into the firm. The protection seller only gains by acquiring a larger share θ of the firm (Lemma 2 shows that θ is higher if b_n is lower). However, these two effects exactly offset each other, so the protection seller is not better off by injecting equity into such a firm.

A very interesting observation is that the threshold that determines how frequently liquidation will occur in the future, $b - hb$, is decreasing in the hedge ratio h. In other words, if the lender chooses a higher hedge ratio, he can reduce the probability of costly liquidation. This happens because purchasing more CDS protection increases the protection seller’s incentive to intervene in the future by injecting equity. This will be important to understand the equilibrium later.

Next, we find the lender’s expected payoff at the stage when he chooses the hedge ratio h. We assume that the CDS spread is set so that the protection seller breaks even including the contingent equity injection of $b - b_n$.

To derive the market value of debt, we need to take into account several different cash flows: debt repayment by the firm, recapitalization by the dealer, debt payoffs in renegotiation and liquidation (if any), cash inflows from the CDS contract (if any), and the cash outflow of the upfront CDS premium. Similarly to the previous lemma, we only present...
the case if the hedge ratio is $h > 1/2$, which will be true in equilibrium. The proof, which contains the derivation for an arbitrary hedge ratio h, is in Appendix H.

Lemma 4. The expected payoff to the debt holder is

$$M(k, b, h) = \int_{z_L}^{z_R} \left(\frac{b - a}{a} + \frac{a}{b} \right) d\Gamma(z) + \int_{z_L}^{z_R} \left[\frac{a}{b} + \frac{a}{b} \right] d\Gamma(z),$$

where $z_L = (b - hb)/k^\alpha$ and $z_R = hb/k^\alpha$ are the thresholds from Lemma 3. The value of debt can be simplified to

$$M(k, b, h) = \int_{z_L}^{z_R} a d\Gamma(z) + \int_{z_L}^{z_R} hbd\Gamma(z). \tag{15}$$

The first integral covers the bad states of the world, $a < b - hb$. In these states, as we know from Lemma 3, the debt is not reduced and the firm files for bankruptcy. The second integral is over the intermediate states of the world, $b - hb < a < hb$, where we know from Lemma 3 that the debt b is reduced to $b_n = a$ and the remaining debt is repaid in full. The third integral covers the good states, $a \geq hb$, where Lemma 3 says that the debt is not reduced. This is followed by renegotiation. Finally, the term in square brackets is the upfront CDS premium paid to the protection seller. This consists of two terms because the protection seller has to be compensated for two types of losses: First, in bad states, the firm is liquidated, which triggers a credit event. Second, in intermediate states, the protection seller will inject equity into the firm.

An important remark can be made about the cost of debt financing at this point. It is easy to show that $M < b$, which means the debt is not risk-free. However, the debt value in the active CDS buyer model would be $M = \int_{0}^{z_R} 0d\Gamma(z) + \int_{z_R}^{Z} hbd\Gamma(z)$, which is strictly below debt value in the extended model. In other words, for fixed values of $k, b,$ and h, the cost of debt financing is lower in the model in which the dealer can recapitalize the firm. The
reason is that in the intermediate states of the world, the protection seller provides financing to the distressed firm and saves it from liquidation. This reduces expected liquidation costs ex ante, which reduces the cost of debt.

Finally, we solve the owner’s ex ante investment and financing problem,

\[
V(k^*, b^*, h(k^*, b^*)) = \max_{k,b} \left\{ m(k, b) - k \right. \\
+ (1 - \tau) \left[\int_0^{z_R} (1 - \theta)(a(z, k) - b_n)d\Gamma(z) + \int_{z_R}^Z (1 - \theta)(a(z, k) - b_r)d\Gamma(z) \right] \right\}. \tag{16}
\]

Under the assumption of a uniform distribution for the profitability shock \(z \), one can show that the optimal hedge ratio is \(h^* = 1 \).\(^{12}\) We know from the previous steps that \(b_n = a \) in the first integral, that \(b_r = hb = b \), that \(\theta = 0 \) in the second integral (from Lemmas 2 and 3) because \(a = b_n = hb \), and that \(z_R = b/k^\alpha \). After making these substitutions, firm value simplifies to

\[
V = \max_{k,b} \left\{ m(k, b) - k + (1 - \tau) \int_{z_R}^Z (a(z, k) - b)d\Gamma(z) \right\},
\]

The market value of debt \(m(k, b) \) is given in Lemma 4. After substituting, firm value becomes

\[
V = -k + \int_0^Z zk^\alpha d\Gamma(z) - \tau \int_{z_R}^Z (zk^\alpha - b)d\Gamma(z). \tag{17}
\]

It is interesting to note that, for any \(k \) and \(b \), this expression is higher by \(\int_0^{z_R} zk^\alpha d\Gamma(z) \) than the corresponding firm value in the active CDS buyer model in Equation (11). This suggests that firm value will be higher at the optimal \(k \) and \(b \) as well.

\(^{12}\)It is sufficient to show that \(\partial M/\partial h \) is positive for all \(h \in [0, 1] \), because of our conjecture that \(h \leq 1 \). For the case \(h \leq 1/2 \), \(M \) is given in the Appendix, Equation (30), and the derivative with respect to \(h \) is \(b(Zk^\alpha - hb)/Zk^\alpha \). This is trivially positive for all \(h \in [0, 1/2] \). For the case \(h > 1/2 \), \(M \) is given by Equation (15), and the derivative with respect to \(h \) is \(b(b - 2hb + Zk^\alpha)/Zk^\alpha \). This is trivially positive at \(h = 1/2 \). At \(h = 1 \), it is positive if and only if \(b \leq Zk^\alpha \). We will make the assumption \(b \leq Zk^\alpha \) at this point and verify that it is true in Equation (18). Under this assumption, the derivative \(\partial M/\partial h \) is positive for all \(h \in [0, 1] \).
For an arbitrary level of capital k, the optimal amount of debt can be found by solving the first order condition with respect to b, which yields

$$b^*(k) = Zk^\alpha. \quad (18)$$

This is strictly higher than the optimal amount of debt in the active CDS buyer model. Using the previous result, one can solve the first order condition with respect to k to find the optimal level of capital:

$$k^* = \left(\frac{\alpha Z}{2}\right)^\frac{1}{1-\alpha}.$$

This level of capital is higher than in the active CDS buyer model. Surprisingly, the increase in investment is so large that the firm reaches the first-best level of investment. In other words, the firm is able to achieve the same capital level as in a world with no frictions.

The emergence of first-best investment is remarkable. It is worthwhile to discuss why this high investment level is possible. The three frictions that constrain investment in this setting are the firm’s inability to commit to repaying its debt, bankruptcy costs, and taxes. All other possible frictions have been removed under our parameter assumptions. The lack of commitment is alleviated by the lender’s ability to buy CDS protection. With our particular assumption on parameter values and on the distribution of z, this problem can be solved completely by increasing the lender’s renegotiation payoff to $b_r = hb = b$. As we know from Section 1, however, this creates a new problem, which is a higher likelihood of costly liquidation. This problem is solved by the protection seller’s ability to inject equity into the firm. Again, with our parameter assumptions, this problem is fully solved as the probability of bankruptcy drops to zero. Finally, taxes become irrelevant as well, because the CDS market allows the firm to increase leverage so much that it can benefit from the maximum possible tax shield.
Another interesting observation is that even though the probability of liquidation is zero, the debt holder purchases a large amount of CDS contracts. In fact, he is fully hedged, as his hedge ratio is $h^* = 1$. This seems counter-intuitive, but the two outcomes are necessary to sustain the equilibrium of the model. It is precisely because the lender purchases a lot of protection that the CDS seller has a strong incentive to save the firm if it is in distress.

A related observation is that the protection seller charges a positive CDS spread upfront, even though a credit event is never triggered in equilibrium. At first sight, this might seem counter-intuitive and unfair. But the protection seller is just being fairly compensated for saving the firm from costly liquidation. Actually, he is providing a valuable service to society, by avoiding costly liquidation.

To close the comparison of the active CDS buyer model and the extended model, we examine the difference between firm value in the two models. The preceding analysis, particularly the positive effect of a single protection seller on investment, suggests that firm value will increase as well. This is indeed the case, as summarized by the following statement.

Proposition 2. Ex ante firm value increases if there is a single protection seller in the CDS market who can intervene in financial distress.

The validity of the statement can be seen from comparing Equations (11) and (17). These two equations show that for any capital k and debt b, firm value is higher with a single protection seller. Therefore, firm value must be higher at the equilibrium levels of capital and debt as well.

2.3. Testable predictions

By comparing our simple active CDS buyer model in Section 2.1 to the extended model in Section 2.2 we can derive multiple testable predictions.
If there is an exogenous shock, for example a regulatory change, that prohibits the protection seller from offering financing to the underlying firm in distress, ex ante credit spreads and the probability of liquidation increase. At the same time, ex ante firm value and investment decrease. The major empirical challenge to testing this prediction is that—to the best of our knowledge—a regulatory change of this kind has not yet been passed.

Another prediction is that if there is an exogenous increase in the number of protection sellers for the same underlying firm, then the CDS spread and the probability of liquidation both increase. At the same time, ex ante firm value and investment decrease. There are two empirical challenges to testing this prediction. First, as we have mentioned before, the CDS market is very opaque. CDS holdings data for protection buyers and sellers are not publicly available for researchers. This data, to the best of our knowledge, is only accessible to regulatory agencies such as the Federal Reserve Board or the Securities and Exchange Commission. Second, even if we could measure the concentration of protection sellers, we would need an exogenous shock that changes the level of concentration.

2.4. Asymmetric information between protection buyer and seller

We argue that the results in the previous sections are not necessarily robust to asymmetric information between the protection buyer and seller. The subsequent analysis is somewhat speculative, since a rigorous extension of the model to allow for asymmetric information would be beyond the scope of this paper. The asymmetric information case is interesting because empirically there is often uncertainty in the market about how many protection sellers there are for a given name. The protection buyer might think that there are many protection sellers, but actually, there might be very few.
An interesting observation from the previous two models is that the upfront CDS spread in the active CDS buyer model is higher than the CDS spread in the extended model. To see this, we can write the CDS spread in the active CDS buyer model as

\[C_1 = \int_0^{hb/k^\alpha} hbd\Gamma(z). \]

Also, we can write the CDS spread in the extended model as

\[C_2 = \int_0^{hb/k^\alpha} (b - a)d\Gamma(z), \]

which we know from Equation (29). If the optimal hedge ratio \(h^* \) is sufficiently high, it is easy to see that \(C_1 > C_2 \). In the case of the uniform distribution, this is true, since \(h^* = 1 \) in both the active CDS buyer model and the extended model. Substituting \(h^* = 1 \) into the equations above, we see that

\[C_1 = \int_0^{b/k^\alpha} bd\Gamma(z) > \int_0^{b/k^\alpha} (b - a)d\Gamma(z) = C_2. \]

This is important because it suggests that the protection seller has an incentive to use the opacity of the CDS market to hide the fact that he is the only protection seller. If the protection buyer believes that there are many protection sellers, then the protection seller can charge a high premium, \(C_1 \). But if he is really the sole protection seller in the market, then the true cost of the contract to him is \(C_2 \). Since we have just shown that \(C_1 > C_2 \), he can make a profit this way.

To make the argument in a very rigorous way would require a substantially more complex model. For example, we would need to endogenize the entry decision of prospective protection sellers, to allow for the debt holder to observe the CDS spread and to update his beliefs.
on how many protection sellers there are in the market, and to solve the equity injection decisions of an arbitrary number of protection sellers.13

Instead, we focus on outlining a simple example. The purpose of this example is to illustrate how important the assumption of symmetric information is in the extended model above. This example shows how the results can be very different if a transparent CDS market is replaced with an opaque one.

We assume that the debt holder does not know how many protection sellers are in the market. For simplicity, only one of two extremes can occur: either there is just one protection seller, or there is a continuum of them. The debt holder and the firm observe a quoted CDS spread, which they use as a noisy signal to infer the number of protection sellers. This inference is made difficult by a private shock to the funding costs of the protection sellers. A favorable shock reduces their funding costs, which reduces the CDS spread they quote. Because of this unobservable funding shock, the debt holder and the firm cannot simply figure out the number of protection sellers from the CDS spread. Without the added noise from the funding shock, the debt holder would know from the quoted spread whether he is in the active CDS buyer model or in the extended model.

For brevity, we only consider the case where the true number of protection sellers is one, but the debt holder (and the firm) believe that there is a continuum of them. In the model, the reason for this is that the debt holder is unsure whether a particular CDS quote is caused by a certain number of protection sellers or by certain funding costs. As we have

13The extensive form of the game would look something like this: (1) Prospective protection sellers decide whether to enter the CDS market for the underlying firm. The number of protection sellers actually entering the market is denoted by \(n \). (2) Protection sellers quote a CDS spread, which is a function of the number of sellers in the market \(n \). Sellers observe a private shock to their funding costs, which affects the CDS spread they quote. (3) Bondholder and firm observe quoted CDS spread, which serves as a (noisy) signal of the number of protection sellers. (4) Firm chooses capital \(k \) and debt \(b \). (5) Bondholder chooses hedge ratio \(h \). (6) Nature chooses profitability shock \(z \). (7) Protection sellers choose how much equity to invest in the firm. (8) Firm repays the debt, renegotiates the debt, or liquidates. Note that stages 4–8 are very similar to our existing model, but with the added complexity in stage 7 that there will be a free-rider problem between the individual protection sellers which needs to be taken into account. Stages 1–3 are completely new, and would add considerable complexity.
seen in Equation (19), a continuum of protection sellers will charge a higher CDS spread, other things being equal. Observing such a high quote, the debt holder cannot determine whether it is caused by a continuum of sellers with low funding costs or by a single seller with high funding costs. A single seller will use this opportunity to hide his type from the debt holder. The argument is similar to the model in Maug (1998), among others.

Absent the funding costs, the CDS spread that a continuum of protection sellers would choose is given by C_1 in Equation (19). The CDS spread chosen by a single protection seller, absent the effect of funding costs, would be C_2, also in Equation (19). After taking into account funding costs, but without assuming a particular value for them, the CDS spread for a continuum of sellers would be below C_1, and for a single seller it would be above C_2. Even without solving the equilibrium explicitly, we know that the resulting equilibrium CDS spread will be a convex combination of C_1 and C_2, or

$$C = xC_1 + (1 - x)C_2,$$

(20)

where $x \in (0, 1)$. The quoted CDS spread C is what the debt holder would use to base his hedging decision on. Without knowing x explicitly, we cannot fully solve the bondholder’s hedging decision. However, we can still say something about the qualitative nature of the resulting equilibrium. Given that the optimal hedge ratio in both the active CDS buyer model and the extended model is $h^* = 1$, it is reasonable to assume that the bondholder will choose the same hedge ratio in the model with asymmetric information.

Since the true number of protection sellers is one, the equity injection and default resolution stage of the game will be as in the extended model. Liquidation will never occur in equilibrium, debt will be repaid in the region $a < b$, and will be renegotiated in the region $a \geq b$. The protection seller never suffers a credit event, and he only needs to recapitalize the firm in the amount of $b - a$ in the states $a < b$. As a result, his expected costs are summarized by C_2 in Equation (19). However, as argued before, his upfront cash inflow is
We have established that $C > C_2$, and the difference $C - C_2$ is the protection seller’s profit.

This outcome is very different from the outcome of either the active CDS buyer model or the extended model. In both of those models, the protection seller makes zero profit. What allows him to make a positive profit now? It is the fact that he can hide his identity in the opacity of the CDS market. The bondholder believes that there might be multiple protection sellers and that there might be liquidation in the future. Therefore, the bondholder is willing to pay a higher CDS spread. However, the true probability of liquidation is zero, which reduces the expected cash outflow of the protection seller.

3. Discussion and policy implications

3.1. Coase Theorem

Some of our results might seem to follow directly from the Coase Theorem. After allowing the protection seller to the bargaining table, the efficient outcome of no liquidation is reached. Since there are no transaction costs associated with bargaining between the owner and the protection seller, this outcome seems to be an implication of the Coase Theorem. However, our results go considerably beyond the Coase Theorem.

The Coase Theorem—as used in most applications—is about how ex post bargaining can lead to efficient outcomes. However, some of our most interesting results are not the efficient outcome ex post, but what happens ex ante. And even what happens ex post in our model is different from the simple Coasian prediction.

In the context of our model, we refer to ex post as everything that happens after the profit shock z realizes (see the timeline in Figure 5). If the lender is hedged with a CDS contract, and if the realization of z is sufficiently low, then the lender’s outside option is very
high relative to the firm’s asset value. This makes Nash bargaining infeasible and so the firm is liquidated. The lender’s tough stance in debt renegotiation effectively pushes the firm into bankruptcy. To avoid a negative cash flow shock, the protection seller therefore makes a payment to the owner—not to the lender—to avoid liquidation. This is already different from the Coasian setup, because it is the lender who effectively causes the deadweight cost of liquidation, but the protection seller makes a payment to a different party—the owner—to avoid the inefficiency.

But the ex ante effects are even more interesting. We show that the lender buys more CDS insurance up front because he wants to give a strong incentive to the protection seller to intervene. In equilibrium, the ex ante probability of needing the insurance is zero, and yet the lender buys a lot of insurance. Finally, the beneficial effects of intervention ex post allow the firm to borrow more and invest more ex ante.

Our results are more reminiscent of the theoretical literature on how carefully chosen ex ante contracts can solve ex post hold-up problems or conflicts of interest. For example, Aghion and Bolton (1992) show how a standard debt contract can solve a financing problem between an entrepreneur and an investor. Assigning control rights in a non-contingent way to the entrepreneur would prohibit her from raising sufficient financing. But giving state-contingent control rights to the investor solves that problem. In another example, Noldeke and Schmidt (1995) show that the famous hold-up problem of Hart and Moore (1988) can be solved by an option contract between the two parties, assuming that actions are verifiable.

Our model implies that adding a CDS contract to the lender’s portfolio and allowing the protection seller to intervene solves two problems: (i) the problem that the owner cannot commit not to renegotiate the debt contract in good states of the world, and (ii) the excessive liquidation resulting from the fact that the lender becomes reluctant to renegotiate the debt.
3.2. Alternative contracts

One of the surprising results in Section 2 is that the probability of liquidation is zero in equilibrium. The reduction in expected bankruptcy costs is one of the main reasons for the increase in firm value going from the model in Section 1 to the model in Section 2. However, this raises the question whether the same outcome could be reached through an alternative contractual arrangement. In particular, why do the owner and the lender not come to an agreement that avoids costly liquidation?

Our model actually allows for such negotiations between the two parties. If there were no CDS market, then the owner and the lender would both agree that avoiding liquidation is in both parties' interest, and they would agree on debt renegotiation. This model is solved formally in Appendix C. As a result, the probability of liquidation without a CDS market would be zero.14

However, the introduction of a CDS market and allowing CDS trading and intervention by the lender destroys that outcome. The lender wants to improve his ex post bargaining position, so he purchases CDS contracts ex ante. As a result, he demands so much in renegotiation that in certain states of the world debt renegotiation becomes infeasible, which leads to liquidation. This result follows from Proposition 1. Therefore, the owner and the lender cannot reach the efficient outcome of no liquidation through a bilateral arrangement.

3.3. Policy implications

Our analysis has several important policy implications. First, we show that having a protection seller who interferes with the debt restructuring of a financially distressed firm is not necessarily reducing firm value. This is not a trivial insight, as some market commentators

14Even though liquidation never occurs in that version of the model, the outcome is far from efficient. The reason is that the probability of strategic default—or debt renegotiation in good states of the world—is much higher, which depresses firm value ex ante.
are argued that the recent cases of CDS investor intervention in Table 1 are evidence that the CDS market is absurd and dysfunctional.15 Also, speculative protection buyers who would benefit from a credit event consider an unexpected intervention of a protection seller as unfair to them.

Our results suggest that the ability of a protection seller to interfere with debt restructuring actually improves firm value. Firm investment increases, the probability of liquidation goes down, and credit spreads narrow. Under certain assumptions on the distribution of future profitability and certain parameter values, firm investment can even achieve the first-best level, and the probability of liquidation can drop to zero.

The resulting equilibrium may seem unfair because the probability of liquidation is zero, but the protection buyer still pays a positive CDS spread. We argue that this is, in fact, necessary: The positive up-front CDS spread compensates the protection seller for his ex post cash injections in the distressed firm.

Our results also imply that a smaller number of protection sellers is better because it increases the incentives of the seller to save the distressed firm. This is in contrast to the intuitive notion that a large number of market participants is always better. Our result is analogous to theories on the disadvantages of dispersed bondholders (e.g., Gertner and Scharfstein, 1991). They are policy relevant today, as there are concerns that the inter-dealer CDS market is too concentrated.16 To the extent that a smaller number of dealers is correlated with a smaller number of protection sellers, our results suggest that a concentrated inter-dealer market can have its benefits.

All these results are based on the assumption of symmetric information between protection buyers, protection sellers, and the underlying firm. In particular, we assume that everyone knows how many protection sellers there are and how much protection they have.

15E.g., Financial Times, “Time to wipe out the absurd credit default swap market”, May 11, 2018.
sold. We argue that this is an important assumption: If we relax it, it is not necessarily true that the firm value increasing equilibrium still prevails. We show that a protection seller always has an incentive to pretend ex ante that he cannot rescue the firm, to sell protection at a high CDS spread, and to rescue the firm ex post.

Empirically, it is not unlikely that this can happen. The CDS market is very opaque, and no regular investor knows how many protection sellers there are, how much protection they have sold, and whether they have deep pockets to inject cash into the underlying firm. Therefore, we argue that it is possible that regulation that improves the transparency of the CDS market can increase firm value. Other authors that propose disclosure requirements in the CDS markets are Bolton and Oehmke (2011).

For example, one could introduce reporting requirements for protection sellers. If someone has a large position in the CDS market, he would need to make that position public. This is similar to reporting requirements in the stock market, where investors who hold more than 5% of a firm’s stock need to report their holdings to the SEC.

We do not take a stance on what it means precisely to have a large position. Future research will be needed to answer that question. For example, a large position could be defined as a notional value of a CDS position that exceeds 5% of the face value of debt of the underlying firm. Alternatively, the top 5 protection sellers by dollar amount for each reference entity would have to be reported each trading day.

4. Conclusion

We document a recent empirical trend of increased intervention by CDS investors in the restructuring of financially distressed firms. Using a simple model, we analyze the effects of CDS intervention on firm value. We start with an active CDS buyer model, without
intervention by the protection seller, which highlights the costs and benefits created by a CDS market. We then extend the model to allow for intervention by the CDS seller.

Our main result is that firm value is not necessarily reduced when we allow for CDS intervention. This is true in spite of the seemingly unfair outcome that the protection buyer has to pay a CDS spread up front that is high relative to the low probability of liquidation. We show that the lender, who is the typical protection buyer in our model, is not worse off by paying the CDS spread, because the seller will bail out the firm in the future, which is good for the lender. We also show that the lower probability of bankruptcy causes ex ante firm borrowing costs to go down, which in turn leads to higher investment and firm value.

Our results depend on symmetric information between all related parties. In particular, we assume that the protection buyer and the firm know how many protection sellers there are. This number determines the CDS seller’s incentive to intervene ex post. Empirically, the CDS market is very opaque. Therefore, we argue that any policy measure to reduce asymmetric information about the incentives of protection sellers has the potential to increase firm value.

We emphasize that our analysis is limited to two types of CDS intervention: A hedged lender who is a tough negotiator in an out-of-court debt restructuring and a protection seller who can avoid a credit event by infusing capital into the firm. Other kinds of CDS intervention, such as so-called “manufactured defaults” and “orphaned CDSs”, are outside of the scope of our paper and are left for future research. Also, our analysis is limited by several simplifying assumptions that make the model tractable. For example, we only have a single lender, we do not endogenize the number of protection sellers, and we ignore the role of liquidity in the CDS market and in the bond market (see Oehmke and Zawadowski (2015) for the effects on the bond market).

Keeping these caveats in mind, our results have important policy implications. First, any regulation that prohibits intervention by protection sellers might reduce firm value instead of increasing it. Second, improved reporting requirements in the CDS market that resemble
the SEC rules for the stock market can increase the likelihood that the CDS market increases firm value.
Figure 1: **Number of small-caps among most actively traded firms in the CDS market.**

This figure presents the number of small market capitalization firms among the 10 most actively traded non-financial firms in the CDS market. The sample period is 4Q2010–2Q2018, and the data is from the Depository Trust and Clearing Corporation (DTCC). Each quarter, we rank firms based on their average daily trading volume in the CDS market, and select the top 10 non-financial firms. These firms are manually matched to Compustat in order to calculate their market capitalization. Each quarter, we count how many of these firms have a market capitalization below $50 billion. The trendline is estimated with OLS and the slope is statistically significant at the 10% level.
Figure 2: Timeline of events in the active CDS buyer model

Owner	Lender	Nature	Owner
k, b | h | z | repay/reneg./liquidate

Figure 3: Optimal default decision

The figure presents the owner’s optimal default decision, as a function of the asset value a. “Liquidity default” denotes the region where the firm would default even in a world where debt cannot be renegotiated. “Strategic default” denotes the region where the firm would not default if debt could not be renegotiated.

<table>
<thead>
<tr>
<th>liquidate</th>
<th>renegotiate</th>
<th>renegotiate</th>
<th>repay</th>
</tr>
</thead>
</table>
| 0 | a_R | b | a_P | a

- liquidity default
- strategic default

Figure 4: Optimal default decision - simplified active CDS buyer model

<table>
<thead>
<tr>
<th>liquidate</th>
<th>renegotiate</th>
</tr>
</thead>
</table>
| 0 | $a_R = hb$

<table>
<thead>
<tr>
<th>Owner</th>
<th>Lender</th>
<th>Nature</th>
<th>Dealer</th>
<th>Owner</th>
<th>Equity holders</th>
</tr>
</thead>
<tbody>
<tr>
<td>k, b</td>
<td>h</td>
<td>z</td>
<td>proposes debt reduction of $(b - b_n)$ for equity stake θ</td>
<td>accept/reject</td>
<td>repay/reneg./liquidate</td>
</tr>
</tbody>
</table>
Figure 6: Optimal default decision - extended model

If $b_n \leq hb$:

<table>
<thead>
<tr>
<th>liquidate</th>
<th>repay b_n</th>
<th>repay b_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>b_n</td>
<td>hb</td>
</tr>
</tbody>
</table>

If $b_n > hb$:

<table>
<thead>
<tr>
<th>liquidate</th>
<th>renegotiate</th>
<th>renegotiate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>hb</td>
<td>b_n</td>
</tr>
</tbody>
</table>

Figure 7: Optimal intervention and optimal default decision - extended model

If $b - hb < hb$ (i.e., $h > 1/2$):

<table>
<thead>
<tr>
<th>$b_n = b$, liquidate</th>
<th>$b_n = a$, repay</th>
<th>$b_n = b$, renegotiate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$b - hb$</td>
<td>hb</td>
</tr>
</tbody>
</table>

If $b - hb \geq hb$ (i.e., $h \leq 1/2$):

<table>
<thead>
<tr>
<th>$b_n = a$, repay</th>
<th>$b_n = b$, renegotiate</th>
<th>$b_n = b$, renegotiate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>hb</td>
<td>$b - hb$</td>
</tr>
</tbody>
</table>
Figure 8: Sensitivity to different levels of debt bargaining power q.
This figure is based on the parameters in Table 2. The variables shown are the total firm value, $V(k^*, b^*, h(k^*, b^*))$, the dividend, $m(k^*, b^*) - k^*$, the optimal hedge ratio, h^*, the credit spread in basis points, the optimal face value of debt, b^*, the optimal capital stock, k^*, and quasi-market leverage, $b^*/V(k^*, b^*, h(k^*, b^*))$. The with-CDS model is shown with diamonds, while the no-CDS model is represented by crosses.
Figure 9: **Sensitivity to different levels of liquidation cost ξ.**

This figure is based on the parameters in Table 2. The variables shown are the total firm value, $V(k^*, b^*, h(k^*, b^*))$, the dividend, $m(k^*, b^*) - k^*$, the optimal hedge ratio, h^*, the credit spread in basis points, the optimal face value of debt, b^*, the optimal capital stock, k^*, and quasi-market leverage, $b^*/V(k^*, b^*, h(k^*, b^*))$. The with-CDS model is shown with diamonds, while the no-CDS model is represented by crosses.
Figure 10: Sensitivity to different levels of renegotiation cost γ.
This figure is based on the parameters in Table 2. The variables shown are the total firm value, $V(k^*, b^*, h(k^*, b^*))$, the dividend, $m(k^*, b^*) - k^*$, the optimal hedge ratio, h^*, the credit spread in basis points, the optimal face value of debt, b^*, the optimal capital stock, k^*, and quasi-market leverage, $b^*/V(k^*, b^*, h(k^*, b^*))$. The with-CDS model is shown with diamonds, while the no-CDS model is represented by crosses.
<table>
<thead>
<tr>
<th>Firm</th>
<th>Year</th>
<th>Summary</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codere</td>
<td>2013</td>
<td>Protection buyer (Blackstone GSO) offers financing to Codere in return for technical default. The losing party is the protection seller (unknown).</td>
<td>Bloomberg</td>
</tr>
<tr>
<td>Caesars Ent.</td>
<td>2014</td>
<td>Protection buyer (Elliott) pushes for early bankruptcy. Protection seller (Blackstone GSO) is against bankruptcy. Elliott is also a major bondholder. Blackstone GSO is a major loan holder. Eventually, Caesars files for bankruptcy before CDS maturity, Elliott profits.</td>
<td>WSJ</td>
</tr>
<tr>
<td>Forest Oil</td>
<td>2014</td>
<td>Financially distressed Forest Oil wants to merge with Sabine Oil & Gas, a competitor, to avoid default. Protection buyers (unknown) purchase stocks in order to vote against the deal.</td>
<td>WSJ</td>
</tr>
<tr>
<td>RadioShack</td>
<td>2014</td>
<td>BlueCrest Capital Management, DW Investment Management and Saba Capital Management sell CDS protection on RadioShack. When RadioShack becomes financially distressed, the protection sellers offer new loans to avoid default.</td>
<td>WSJ</td>
</tr>
<tr>
<td>Norske Skog</td>
<td>2016</td>
<td>Protection seller (Blackstone GSO) keeps financially distressed firm alive and collects CDS spread.</td>
<td>Reuters</td>
</tr>
<tr>
<td>iHeartMedia</td>
<td>2016</td>
<td>iHeartMedia misses a payment on a bond owed to its subsidiary, which triggers a CDS credit event. This eliminates the CDS contracts of bondholders, which might make a future debt restructuring easier for the firm.</td>
<td>WSJ</td>
</tr>
<tr>
<td>Matalan</td>
<td>2017</td>
<td>Protection sellers (unknown group of hedge funds) offer financing to keep financially distressed firm alive. They request that the new debt is issued by a new legal entity. They make a future debt restructuring easier for the firm.</td>
<td>FT</td>
</tr>
<tr>
<td>Hovnanian</td>
<td>2018</td>
<td>Protection buyer (Blackstone GSO) offers financing in return for default of a subsidiary of Hovnanian.</td>
<td>WSJ</td>
</tr>
<tr>
<td>McClatchy</td>
<td>2018</td>
<td>Protection seller (Chatham) provides financing to McClatchy, asks to move debt to subsidiary. Protection seller collects CDS spread on parent company with zero default risk. Deal is cancelled a few months later.</td>
<td>Bloomberg</td>
</tr>
<tr>
<td>Supervalu</td>
<td>2018</td>
<td>United Natural Foods wants to acquire Supervalu and needs to issue new debt to finance the deal. Protection buyers (unknown) for Supervalu would lose money in the deal, because their CDS protection would become worthless. They convince debt underwriter (Goldman Sachs) to make Supervalu a co-borrower of the new debt.</td>
<td>Bloomberg</td>
</tr>
<tr>
<td>Neiman Marcus</td>
<td>2019</td>
<td>Protection buyer (Aurelius Capital Management) pushes Neiman Marcus to link more of its debt to CDS contracts.</td>
<td>WSJ</td>
</tr>
</tbody>
</table>

Table 1: Summary of recent cases of CDS investor involvement.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Economic interpretation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Risk-free rate</td>
<td>0.05</td>
</tr>
<tr>
<td>τ</td>
<td>Corporate income tax rate</td>
<td>0.02</td>
</tr>
<tr>
<td>α</td>
<td>Return to scale</td>
<td>0.5</td>
</tr>
<tr>
<td>Z</td>
<td>Upper bound of uniform distribution for profitability shock</td>
<td>2</td>
</tr>
<tr>
<td>λ</td>
<td>Equity issuance costs</td>
<td>0.1</td>
</tr>
<tr>
<td>ξ</td>
<td>Proportional liquidation costs</td>
<td>0.6</td>
</tr>
<tr>
<td>γ</td>
<td>Probability of renegotiation failure</td>
<td>0.7</td>
</tr>
<tr>
<td>q</td>
<td>Bargaining power of the debt holder</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 2: **Base case parameter values.** This table provides the base case parameters used in the numerical solutions of the model. The corporate tax rate τ is lower than the real-world corporate tax rate, because we assume that the whole face value of debt is tax deductible. Without correcting τ downwards, the model would overstate the tax benefits of debt. One can show that our model is equivalent to one where the discount rate for equity is the discount rate for debt plus a parameter i, with $\tau = i/(1 + r + i)$. The value of $\tau = 0.02$, together with $r = 0.05$, implies that $i = 0.021$, i.e., the discount rate of equity is 2.1 percentage points higher than the risk-free interest rate.

<table>
<thead>
<tr>
<th></th>
<th>Owner</th>
<th>Dealer</th>
<th>Lender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt repayment</td>
<td>$(1 - \theta)(a - b_n)$</td>
<td>$\theta(a - b_n)$</td>
<td>b_n</td>
</tr>
<tr>
<td>Debt renegotiation</td>
<td>$(1 - \theta)(a - b_r)$</td>
<td>$\theta(a - b_r)$</td>
<td>b_r</td>
</tr>
<tr>
<td>Liquidation</td>
<td>0</td>
<td>$-hb$</td>
<td>hb</td>
</tr>
</tbody>
</table>

Table 3: **Extended model – terminal payoffs for each player.**
References

Wong, Tak-Yuen, and Jin Yu, 2018, Credit Default Swaps and Debt Overhang, *SSRN Electronic Journal*.

Appendices

A. Sample construction

We download data from the website of the Depository Trust and Clearing Corporation (DTCC) on the transaction volume for the top 1,000 reference entities in the single-name CDS market. The sample period is 4Q2010–2Q2018. We drop reference entities outside of the Americas region from the sample. In each quarter, we rank reference entities by the average daily notional amount trading volume, expressed in U.S. dollar equivalents, and keep the top 10 reference entities. We also sort alphabetically by firm name to break ties in trading volume. We only keep reference entities in North America (e.g., we drop Petrobras). If it is not clear if a firm is North American, we keep in the sample if it belongs to a major U.S. stock index like the S&P 500 or the Russell 1000 (e.g., Weatherford International or Transocean).

Next, we manually match each reference entity to a firm in the quarterly Compustat database and drop financial firms (SIC codes 6000–6799) from the sample. If a firm seems to be a financial firm, even if the SIC code suggests otherwise, we drop it from the sample (e.g., Berkshire Hathaway). If both a parent company and a subsidiary are traded reference entities, we only keep the parent company. If the number of firms per quarter drops below 10 firms, we add new firms from the list of 1,000 reference entities to keep the number equal to 10 across all quarters. For each firm-quarter observation, we calculate the market value of equity as the number of common shares outstanding at the end of the fiscal quarter (cshoq) times the closing stock price at the end of the fiscal quarter (prccq). If the number of shares outstanding or the stock price is missing in Compustat, we fill in data from CRSP. Some firms are private, with no market capitalization, so we drop them from the sample.

Finally, each quarter we calculate the number of firms with market value of equity below $50 billion. This threshold is relatively high compared to other studies that look at small-cap firms. However, most firms that are traded in the single-name CDS market are relatively large to begin with. Therefore, we use a higher threshold to have a meaningful number of “small” firms in the sample.

17In keeping only the top firms, we follow the methodology in The Wall Street Journal, “Credit-Default Swaps Get Activist New Look”, December 23, 2014. In that article, only the top 5 firms are kept. We produced Figure 1 also with using the top 5 firms only, and our results are even stronger. The estimated trendline is steeper and significant at the 5% level.
B. Proof of Proposition 1

From Equation (2), renegotiation is feasible if

\[hb + (1 - h)(1 - \xi)a \leq a. \] (21)

If renegotiation is feasible, the solution of (2) is

\[b_r(z, k, b, h) = hb + (1 - h)(1 - \xi)a + q[a - hb - (1 - h)(1 - \xi)a]. \] (22)

Debt repayment is preferred to renegotiation when \(a - b \geq (1 - \gamma)(a - b_r) \), or

\[a [1 - (1 - \gamma)(1 - q)s(h)] \geq b [1 - (1 - \gamma)(1 - q)h], \] (23)
in which \(s(h) = \xi + h(1 - \xi) \). Renegotiation feasibility depends on the sign of \(s(h) \), whose only zero is

\[h_0 = -\frac{\xi}{1 - \xi} < 0. \]

When \(h > h_0 \) (i.e., \(s(h) > 0 \)), renegotiation is feasible if \(a \geq a_R \), where \(a_R \) is defined as

\[a_R = \frac{hb}{1 - (1 - h)(1 - \xi)}. \] (24)

Because the numerator on the right-hand side of (24) is negative when \(h \in [h_0, 0] \), then renegotiation is feasible for all \(a > 0 \). Otherwise, for \(h > 0 \), renegotiation is feasible for \(a \geq a_R > 0 \). When \(h = h_0 \) (i.e., \(s(h) = 0 \)), then Equation (21) is always satisfied, and so renegotiation is feasible for all \(a > 0 \). Finally, if \(h < h_0 \) (i.e., \(s(h) < 0 \)), renegotiation is feasible if \(a \leq a_R \), and in this case, \(a_R > 0 \). Therefore, renegotiation is feasible for \(a \in [0, a_R] \) when \(h < h_0 \).

The choice between debt repayment and renegotiation depends on the sign of \(1 - (1 - \gamma)(1 - q)s(h) \), and the only zero of this function is

\[h_1 = \frac{1 - \xi(1 - q)(1 - \gamma)}{(1 - q)(1 - \xi)(1 - \gamma)}, \] (25)
with \(h_1 > h_0 \), and \(h_1 > 1 \). When \(h < h_1 \) (i.e., \(1 - (1 - \gamma)(1 - q)s(h) > 0 \)), repayment is optimal for \(a \geq a_P \), where \(a_P \) is defined as

\[
 a_P = \frac{b[1 - h(1 - \gamma)(1 - q)]}{1 - (1 - \gamma)(1 - q)s(h)}.
\]

Because the numerator in (26) is negative for \(1/[1 - (1 - \gamma)(1 - q)] \leq h \), and \(1/[1 - (1 - \gamma)(1 - q)] < h_1 \) (this is equivalent to \((1 - \gamma)(1 - q) < 1 \), which is consistent with our assumptions), then for \(h \in [1/[1 - (1 - \gamma)(1 - q)], h_1[, a_P \leq 0, and repayment is optimal for all \(a > 0 \). Otherwise, for \(h \leq 1/[1 - (1 - \gamma)(1 - q)] \), repayment is optimal for \(a \geq a_P \).

If \(h = h_1 \) (i.e., \(1 - (1 - \gamma)(1 - q)s(h) = 0 \)), the left–hand side of (23) vanishes, and in the right–hand side, from \(1 - (1 - \gamma)(1 - q)h_1 \), after rearranging, we have \(-\xi[\gamma + q(1 - \gamma)]/(1 - \xi) \), which is negative. Because the left–hand side is zero and the right–hand side is negative, inequality (23) holds true and repayment is preferred to renegotiation for all \(a > 0 \).

When \(h > h_1 \) (i.e., \(1 - (1 - \gamma)(1 - q)s(h) < 0 \)), repayment is optimal for \(a \leq a_P \). However, for \(h > h_1 \), we have that \([1 - h(1 - q)] < 0 \) in (26). Therefore, \(a_P > 0 \), and repayment is optimal for \(a \in [0, a_P] \).

When renegotiation is not feasible, the equity payoff is \(a - b \) under debt repayment and zero under liquidation. Therefore, if \(a \geq b \), the owner prefers repayment, and if \(a < b \), she prefers liquidation.

To prove Point 2 of Proposition 1, we need to study the relation between \(b/(1 - \xi) \), \(a_P \), \(a_R \), and \(b \). We will do this in the following Lemmas.

The relation between \(b/(1 - \xi) \), \(a_P \), \(a_R \), and \(b \)

Lemma 5 (Compare \(a_P \) and \(b \)). If \(1 - (1 - \gamma)(1 - q)s(h) > 0 \) (i.e. \(h < h_1 \)), and \(h > 1 \), then \(a_P < b \).

If \(h < 1 \) then \(b < a_P \).
If \(1 - (1 - \gamma)(1 - q)s(h) < 0 \) (i.e. \(h > h_1 \)), then \(b < a_P \).

This can be shown by rearranging the inequality

\[
 \frac{b[1 - h(1 - \gamma)(1 - q)]}{1 - (1 - \gamma)(1 - q)s(h)} < b
\]

and using the different conditions on \(h \).
Lemma 6 (Compare \(a_R \) and \(b \)). If \(s(h) > 0 \) (i.e. \(h > h_0 \)), and \(h < 1 \), then \(a_R < b \).
If \(s(h) > 0 \) (i.e. \(h > h_0 \)), and \(h > 1 \), then \(a_R > b \).
If \(s(h) < 0 \) (i.e. \(h < h_0 \)), and \(h < 1 \), then \(a_R > b \).

To show this, assume \(s(h) > 0 \) and \(h < 1 \). Then, from \(h/s(h) < 1 \), after rearranging using the different conditions, it follows that the inequality holds. The other two cases are analogous.

Lemma 7 (Compare \(a_P \) and \(b/(1 - \xi) \)). If \(1 - (1 - \gamma)(1 - q)s(h) > 0 \) (i.e. \(h < h_1 \)), then \(a_P < b/(1 - \xi) \).
If \(1 - (1 - \gamma)(1 - q)s(h) < 0 \) (i.e. \(h > h_1 \)), then \(b/(1 - \xi) < a_P \).

This can be shown by rearranging the inequality
\[\frac{b[1 - h(1 - \gamma)(1 - q)]}{1 - (1 - \gamma)(1 - q)s(h)} < \frac{b}{1 - \xi} \]
and using the different conditions on \(h \).

Lemma 8 (Compare \(a_R \) and \(b/(1 - \xi) \)). If \(s(h) > 0 \) (i.e. \(h > h_0 \)), then \(a_R < b/(1 - \xi) \).
If \(s(h) < 0 \) (i.e. \(h < h_0 \)), then \(a_R > b/(1 - \xi) \).

To show this, assume \(s(h) > 0 \) and \(h < 1 \). Then, from \(h/s(h) < 1/(1 - \xi) \), after rearranging using the conditions, it follows that the inequality holds. The other two cases are analogous.

Lemma 9 (Compare \(a_P \) and \(a_R \)). \(a_P \geq a_R \) if and only if
\[\frac{1 - h(1 - \gamma)(1 - q)}{1 - (1 - \gamma)(1 - q)s(h)} \geq \frac{h}{s(h)}. \]

This is proved as follows. Since the denominator can be either positive or negative, we have the following four subcases:

1. Assume \(s(h) > 0 \) and \(1 - (1 - \gamma)(1 - q)s(h) > 0 \), which is the same as \(h > h_0 \) and \(h < h_1 \). In this subcase, it can be shown that
 - If \(h_0 < h < 1 \), then \(a_P > a_R \).
 - If \(1 < h < h_1 \), then \(a_P < a_R \).
This follows from rearranging the inequality above using the conditions, and using the fact that $h_0 < 1 < h_1$.

2. Assume $s(h) > 0$ and $1 - (1 - \gamma)(1 - q)s(h) < 0$, which is the same as $h > h_0$ and $h > h_1$. Because $h_0 < h_1$, these assumptions are equivalent to $h > h_1$. In this case, it can be shown that the inequality above always holds strictly, because $h_1 > 1$. Therefore, $a_P > a_R$ for all $h > h_1$.

3. Assume $s(h) < 0$ and $1 - (1 - \gamma)(1 - q)s(h) > 0$, which is the same as $h < h_0$ and $h < h_1$. Because $h_0 < h_1$, these assumptions reduce to $h < h_0$. In this case, it can be shown that the inequality above never holds. Therefore, $a_P < a_R$ for all $h < h_0$.

4. Assume $s(h) < 0$ and $1 - (1 - \gamma)(1 - q)s(h) < 0$, which is equivalent to $h < h_0$ and $h > h_1$. This is impossible, so this subcase can be dropped.

Lemma 10 (Compare 0 and a_R). If $h > 0$ and $h > h_0$ then $a_R > 0$.

If $h < 0$ and $h < h_0$ then $a_R < 0$.

If $h < 0$ and $h < h_0$ then $a_R > 0$.

This follows from the definition

$$a_R = \frac{hb}{1 - (1 - h)(1 - \xi)}.$$

Lemma 11 (Compare 0 and a_P). If $h < \frac{1}{((1 - \gamma)(1 - q))}$ and $h < h_1$ then $0 < a_P$.

If $\frac{1}{((1 - \gamma)(1 - q))} < h < h_1$ then $0 > a_P$.

If $h > \frac{1}{((1 - \gamma)(1 - q))}$ and $h > h_1$ then $0 < a_P$.

This follows from the definition

$$a_P = \frac{b[1 - h(1 - \gamma)(1 - q)]}{1 - (1 - \gamma)(1 - q)s(h)}.$$

The optimal default policy

The above Lemmas enable us to derive the optimal default policy. Because $h_0 < 0 < 1 < \frac{1}{((1 - \gamma)(1 - q))} < h_1$, there are six regions for h. We will describe the default policy in these regions, from lowest to highest h, and in each of the six cases, for the different a. Initially we will consider only the interior of these intervals. We will deal with the boundaries (i.e., $h = h_0$, $h = 0$, etc.) later on.
1. If $h < h_0$, because in Lemmas 3, 4, and 7 we have determined that $0 < a_P < b/(1 - \xi) < a_R$, then the following diagram summarizes the optimal actions:

```
  renegotiate  repay  repay  repay
  0           a_P    b/(1 - \xi) a_R
```

2. If $h_0 < h < 0$, because $a_R < 0 < a_P < b/(1 - \xi)$ from Lemmas 3, 6, and 7, we can derive the following diagram:

```
  renegotiate  repay  repay
  a_R          0      a_P    b/(1 - \xi)
```

3. If $0 < h < 1$, we know from Lemmas 1, 2, 3, and 6 that $0 < a_R < b < a_P < b/(1 - \xi)$.

```
  liquidate  renegotiate  renegotiate  repay  repay
  0         a_R         b       a_P    b/(1 - \xi)
```

4. If $1 < h < 1/[(1 - \gamma)(1 - q)]$, we have determined in Lemmas 1, 2, 4, and 7 that $0 < a_P < b < a_R < b/(1 - \xi)$.

```
  liquidate  liquidate  repay  repay  repay
  0         a_P         b       a_R    b/(1 - \xi)
```

5. If $1/[(1 - \gamma)(1 - q)] < h < h_1$, we know from Lemmas 2, 4, and 7 that $a_P < 0 < b < a_R < b/(1 - \xi)$. Then the optimal actions are

```
  liquidate  repay  repay  repay
  a_P        0       b       a_R    b/(1 - \xi)
```

6. Finally, if $h_1 < h$, because from Lemmas 2, 3, and 4 we have $0 < b < a_R < b/(1 - \xi) < a_P$, then we can derive the diagram

```
  liquidate  repay  repay  repay
  0         b       a_R    b/(1 - \xi) a_P
```

The six diagrams above can be summarized into three main cases. This is done in Figure 11.
The figure presents the shareholder’s optimal default decision as a function of asset value a. “Liquidity default” denotes the region where the firm would default even in a world where debt cannot be renegotiated. “Strategic default” denotes the region where the firm would not default if debt could not be renegotiated.

Case (a): $h \leq 0$

<table>
<thead>
<tr>
<th>renegotiate</th>
<th></th>
<th>repay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a_P</td>
<td></td>
</tr>
</tbody>
</table>

Case (b): $0 < h < 1$

<table>
<thead>
<tr>
<th>liquidate</th>
<th>renegotiate</th>
<th>renegotiate</th>
<th>repay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a_R</td>
<td>b</td>
<td>a_P</td>
</tr>
</tbody>
</table>

liquidity default

strategic default

Case (c): $h \geq 1$

<table>
<thead>
<tr>
<th>liquidate</th>
<th></th>
<th>repay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
Finally, we analyze the optimal decision at the boundaries $h = 0$ and $h = 1$.\footnote{The other boundaries, h_0, $1/[(1 - \gamma)(1 - q)]$, and h_1 are not relevant, as they are interior points of intervals in which the same action is optimal.} At $h = 0$, from Lemmas 1 and 2 we have $0 = a_R < b < a_P$. From this, a graph similar to the above Cases 1 or 2 can be derived, whereby renegotiation is optimal below a_P, and repayment is optimal above a_P. At $h = 1$, from the previous section we know that $0 < b = a_P = a_R$. From this, a graph similar to Cases 4, 5, or 6 can be derived, whereby liquidation is optimal below b, and repayment is optimal above b, and renegotiation never occurs.

Proof that the equilibrium hedge ratio is in $[0, 1]$

Here, we will prove Point 1 of Proposition 1. The proof consists of two parts. In the first part, we show that $h < 0$ is not optimal. Then we show that $h > 1$ never occurs.

For the first part, assume that $h < 0$, which corresponds to Case (a). Note that $\partial a_P / \partial h < 0$, for any h. This is because

$$\frac{\partial}{\partial h} \frac{b[1 - h(1 - \gamma)(1 - q)]}{1 - (1 - \gamma)(1 - q)s(h)} < 0$$

can be shown to be equivalent to $(1 - \gamma)(1 - q) < 1$, which is always true, given our assumptions. Also, we know that the payoff to the debt holder is higher for $a > a_P$ than for $a < a_P$. It follows that the debt holder can always increase his expected payoff by increasing the hedge ratio h. Therefore, $h < 0$ cannot be optimal.

For the second part, assume that $h > 1$, which corresponds to Case (c). As Figure 11 shows, the debt holder receives the liquidation payoff if $a < b$, and the repayment payoff if $a > b$. Neither of the two payoffs, nor the threshold b separating them, depends on h. Therefore, the debt holder cannot be made better off (or worse off) by increasing his hedge ratio above the point $h = 1$.

C. The model without a CDS market

The solution of the model without a CDS market is very similar to the solution of the model with a CDS market. Let’s derive the solution following the same logic as before. The case $(1 - \xi)a > b$, is simple, as it does not depend on h, with repayment being always optimal.
If \((1 - \xi)a \leq b\), renegotiation is feasible if \((1 - \xi)a \leq a\), so renegotiation is feasible for all \(a \leq b/(1 - \xi)\). If renegotiation is feasible, the solution can be written as

\[
b_r = (1 - \xi)a + q[a - (1 - \xi)a].
\]

Repayment is preferred to renegotiation when \(a - b \geq (1 - \gamma)(a - b_r)\), or,

\[
a[1 - (1 - \gamma)(1 - q)\xi] \geq b.
\]

We can define \(a_P = b/[1 - (1 - q)(1 - \gamma)\xi]\), where \(a_P \geq 0\) under our parameter assumptions. Then, repayment is optimal for \(a \geq a_P\) and renegotiation is optimal for \(a \in [0, a_P]\).

It is easy to show that \(a_P < b/(1 - \xi)\). Therefore, the final solution is that renegotiation is optimal for \(a \in [0, a_P]\[, and repayment is optimal for \(a \geq a_P\).

D. Proof that the optimal hedge ratio is \(h \leq 1\) in the extended model in Section 2.2

We solve the model by backwards induction under the assumption \(h > 1\), and show that the resulting debt value cannot be optimal from the debt holder’s perspective.

From Figure 6, because for \(h > 1\) we have necessarily \(b < hb\), considering the case \(b_n \leq b < hb\), the firm’s default decision is

<table>
<thead>
<tr>
<th>liquidate</th>
<th>repay (b_n)</th>
<th>repay (b_n)</th>
<th>repay (b_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(b_n)</td>
<td>(b)</td>
<td>(hb)</td>
</tr>
</tbody>
</table>

In order to determine the outside option of the initial owner in case she rejects a proposal from the protection seller, we report from Figure 11 the solution of the active CDS buyer model in the case \(h > 1\):

<table>
<thead>
<tr>
<th>liquidate</th>
<th>repay (b)</th>
<th>repay (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(b)</td>
<td>(hb)</td>
</tr>
</tbody>
</table>
Using the same logic as in the proof of Lemma 2, we can derive the optimal θ in the case $h > 1$:

$$\theta = \begin{cases}
1 - \frac{a-b}{a-b_n} & \text{if } a \geq b, \\
1 & \text{if } a < b.
\end{cases}$$

Analogously to the proof of Lemma 3, one can derive the optimal b_n, which becomes:

$$b_n = \begin{cases}
b & \text{if } a \geq b, \\
a & \text{if } a < b.
\end{cases}$$

Both cases, $a \geq b$ and $a < b$, are followed by repayment of debt. Having the optimal θ and b_n, we can summarize the solution graphically as follows:

Both cases, $a \geq b$ and $a < b$, are followed by repayment of debt. Having the optimal θ and b_n, we can summarize the solution graphically as follows:

Similarly to Equation (29), we can now derive the market value of debt,

$$M = \int_0^{b/k^\alpha} \left[(b-a) + a \right] d\Gamma(z) + \int_{b/k^\alpha}^{Z} b d\Gamma(z) - \int_0^{b/k^\alpha} (b-a) d\Gamma(z),$$

which can be simplified to

$$M = \int_0^{b/k^\alpha} ad\Gamma(z) + \int_{b/k^\alpha}^{Z} bd\Gamma(z).$$

Because this expression does not depend on h, the debt holder cannot do better (nor worse) by increasing his hedge ratio beyond 1.

E. Proof of Lemma 1

From Equation (14), debt renegotiation is only feasible if $a \geq hb$. Also, we know that if renegotiation is feasible, the equity holders prefer repayment to renegotiation if $b_n \leq hb$. If renegotiation is infeasible, the equity holders prefer repayment to liquidation if $a \geq b_n$. Combining these three inequalities produces the stated result.
F. Proof of Lemma 2

We consider two possible cases: $b_n \leq hb$ and $b_n > hb$. As for the first case,

- if $a \geq hb$, the owner’s payoff if the offer is accepted is $(1 - \theta)(a - b_n)$, corresponding to debt repayment, and if the offer is rejected it is $a - b_r(b) = a - hb$, corresponding to renegotiation.\(^{19}\) Equating the two payoffs we have

$$\theta = 1 - \frac{a - hb}{a - b_n}.$$

Because $a \geq hb \geq b_n$, then $\theta \leq 1$, with strict inequality if either of the two inequalities $a \geq hb$ and $hb \geq b_n$ is strict.

- if $b_n \leq a < hb$, the payoff if the offer is accepted is $(1 - \theta)(a - b_n)$ from debt repayment, and 0 from liquidation if the offer is rejected. From the equality of the two payoffs we find $\theta = 1$;

- if $a < b_n$, the payoff is 0 from liquidation regardless if the offer is accepted or rejected. The dealer can choose any $\theta \in [0, 1]$. We assume that in equilibrium, $\theta = 1$.

As for the case $b_n > hb$,

- if $a \geq b_n$, the owner’s payoff if the offer is accepted is $(1 - \theta)(a - b_r(b_n)) = (1 - \theta)(a - hb)$, deriving from renegotiation of the debt b_n, and if the offer is rejected it is $a - b_r(b) = a - hb$, corresponding to renegotiation of the debt b. Equating the two payoffs we have $\theta = 0$;

- if $hb \leq a < b_n$, the payoff if the offer is accepted is $(1 - \theta)(a - b_r(b_n))$, from renegotiation of b_n, and if the offer is rejected it is $a - b_r(b)$, from renegotiation of b. Hence, $\theta = 0$;

- if $a < hb$, the payoff is 0 from liquidation regardless if the offer is accepted or rejected.

As before, we assume that in equilibrium, $\theta = 1$.

\(^{19}\) Notice that the $b_r(b)$ is the b_r under rejection, i.e., without a debt reduction. Under our parameter assumptions, the two expressions for b_r are the same, but in general they are not. For this reason, we use the notation $b_r(b)$, not b_r.

60
G. Proof of Lemma 3

Motivated by Lemma 2, and the expression of the optimal θ, we consider two possible cases: $a > hb$ and $a < hb$. As for the first case:

- If the dealer chooses a sufficiently low b_n such that $b_n \leq hb$, because this would be a case of repayment of b_n, his payoff is
 \[\max_{b_n} \{-(b - b_n) + \theta(a - b_n)\} \, . \]

 After substituting for $\theta = 1 - \frac{a - hb}{a - b_n}$ from Lemma 2, this simplifies to $\max_{b_n} (-b + hb)$, which is independent of b_n and negative.

- If the dealer chooses a sufficiently high b_n such that $b_n > hb$, because this in this case the debt would be renegotiated, his payoff is
 \[\max_{b_n} \{-(b - b_n) + \theta(a - b_n)\} \, . \]

 Based on Lemma 2, the optimal θ is 0 in this case. Hence, the payoff simplifies to $\max_{b_n} (-b - b_n)$, which is maximized at $b_n = b$. This implies that no recapitalization takes place, and the dealer’s payoff is zero, which is higher than in the case considered above.

Therefore, if $a > hb$, it is optimal for the dealer not to reduce the debt.

As for the second case, $a < hb$:

- Suppose the dealer chooses a sufficiently low b_n such that $b_n \leq hb$.

 - If he chooses a sufficiently low b_n such that $b_n \leq a < hb$, because this would be a case of repayment, he gets
 \[\max_{b_n} \{-(b - b_n) + \theta(a - b_n)\} \, . \]

 After substituting for $\theta = 1$ from Lemma 2, this simplifies to $\max_{b_n} (a - b)$, which is independent of b_n and negative. Because $a < hb$, then $a < b$, and therefore the payoff is negative.
Otherwise, if he chooses a value of b_n such that $b_n > a$, then he gets

$$\max_{b_n} \{-(b - b_n) - hb\},$$

because this would be a case of liquidation.

We now show that the dealer is better off by choosing b_n such that he is in the case $b_n \leq a < hb$ rather than in the case $b_n > a$. This is the case because, for the dealer’s payoff in the two cases, it is true that $a - b > \max_{b_n} \{-(b - b_n) - hb\}$, and this inequality is equivalent to $a > \max_{b_n} \{b_n - hb\}$. In the last inequality, the left-hand side is always positive, and the right-hand side is negative or zero, since $b_n \leq hb$ by assumption. We conclude that $b_n \leq a$.

- If the dealer chooses a sufficiently high b_n such that $b_n > hb$, then this would be a case of liquidation with payoff

$$\max_{b_n} \{-(b - b_n) - hb\}. $$

The maximum payoff is $-hb$, which is attained at $b_n = b$.

Comparing the optimal payoffs in the cases $b_n \leq hb$ and $b_n > hb$ reveals that there is no globally optimal b_n. If $-hb > a - b$, it is optimal to choose $b_n = b$, which is followed by liquidation. Otherwise, the optimal new debt is $b_n = a$, which is followed by repayment.

We conclude the case $a < hb$ as follows: If $-hb > a - b$, or $a < b - hb$, it is optimal to choose $b_n = b$, which is followed by liquidation. Otherwise, the optimal new debt is $b_n = a$, which is followed by repayment.

To describe the optimal b_n across all possible cases, we have to take into account two thresholds, hb and $b - hb$. It is easy to show that $hb < b - hb$ is equivalent to $h < 1/2$. Hence, we have Figure 7.

H. Proof of Lemma 4

From the proof of Lemma 3, if $a \geq hb$, there is renegotiation of the debt, no intervention by the dealer, and no payment from the CDS contract. On the other hand, if $a < hb$ the equilibrium strategy depends on whether h is higher or lower than $1/2$, see Figure 7. If $h \leq 1/2$, with $b_n = a$ there is early repayment in the amount of $b - a$, plus final repayment of the remaining debt b_n, and no payment from the CDS contract. If $h > 1/2$, there is the same
policy if $b - hb \leq a < b$, and if $a < b - hb$ there is no intervention followed by liquidation, with the compensation from the CDS contract.

Hence, if $b - hb > hb$, the expected total payoff to the debt is

$$M = \int_{0}^{z_{R}} \left[(b - a) \text{ recapitalization} + a \text{ debt paym.} \right] d\Gamma(z) + \int_{z_{R}}^{Z} hb \text{ renegotiation} \ d\Gamma(z) - \int_{0}^{Z} (b - a) d\Gamma(z),$$

(29)

where $z_{R} = hb/k^{\alpha}$. The last term is the expectation of the payment by the dealer, which corresponds to the recapitalization of the firm by $b - a$. This expression simplifies to

$$M(k, b, h) = \int_{0}^{z_{R}} ad\Gamma(z) + \int_{z_{R}}^{Z} hbd\Gamma(z).$$

(30)

If $b - hb < hb$, then the total expected payoff to the debt is

$$M = \int_{0}^{z_{L}} \left[0 \text{ bond payoff} + \frac{hb}{k^{\alpha}} \text{ CDS payoff} \right] d\Gamma(z) + \int_{z_{L}}^{z_{R}} \left[(b - a) \text{ recapitalization} + a \text{ debt paym.} \right] d\Gamma(z)$$

$$+ \int_{z_{R}}^{Z} hb \text{ renegotiation} \ d\Gamma(z) - \left[\int_{0}^{z_{L}} hbd\Gamma(z) + \int_{z_{L}}^{z_{R}} (b - a) d\Gamma(z) \right],$$

where $z_{L} = (b - hb)/k^{\alpha}$ is the liquidation threshold for this case.